library(amplican)
library(ggplot2)
alignments <- data.table::fread(params$alignments)
data.table::setDF(alignments)
config <- data.frame(data.table::fread(params$config_summary))
height <- amplican::plot_height(length(unique(config$Barcode)))

Description


Read distribution plot - plot shows number of reads assigned during read grouping
Filtered Reads - plot shows percentage of assigned reads that have been recognized as PRIMER DIMERS or filtered based on low alignment score
Edit rates - plot gives overview of percentage of reads (not filtered as PRIMER DIMER) that have edits
Frameshift - plot shows what percentage of reads that have frameshift
Read heterogeneity plot - shows what is the share of each of the unique reads in total count of all reads. The more yellow each row, the less heterogeneity in the reads, more black means reads don't repeat often and are unique
Top unassigned reads - take a look at the alignment of most abundant forward and reverse complemented reverse reads for each barcode, if you find that there is many unassigned reads you can ivestigate here.


Barcode Summary


Groups IDs

library(knitr)
groupDF <- data.frame(group = unique(config$Barcode),
                      IDs = sapply(unique(config$Barcode),
                                   function(x) toString(config$ID[config$Barcode == x])))
kable(groupDF, row.names = FALSE)

Read distribution

p <- ggplot(data = config, 
            aes(x = as.factor(Barcode), y = log10(Reads + 1), 
                order = Barcode, fill = ID)) +
  geom_bar(position='stack', stat='identity') +
  ylab('Number of reads + 1, log10 scaled')  +
  xlab('Barcode')
if (length(groupDF$group) > 20) {
  p <- p + theme(legend.position = 'none',
                 legend.direction = 'horizontal',
                 axis.text = element_text(size = 12),
                 axis.title = element_text(size = 14, face = 'bold'))
} else {
  p <- p + theme(legend.position = 'top',
                 legend.direction = 'horizontal',
                 axis.text = element_text(size = 12),
                 axis.title = element_text(size = 14, face = 'bold'),
                 legend.title = element_blank())
}
p + coord_flip()

Filtered Reads

barcodeTable <- aggregate(cbind(Reads, Reads_Filtered, PRIMER_DIMER, 
                                Low_Score, Reads_Edited, Reads_Frameshifted) ~ Barcode, 
                          data = config, sum)
barcodeTable$F_percentage <- 
  (barcodeTable$PRIMER_DIMER + barcodeTable$Low_Score) * 100/barcodeTable$Reads
barcodeTable$F_percentage[is.nan(barcodeTable$F_percentage)] <- 0  

ggplot(data = barcodeTable, aes(x = as.factor(Barcode), y = F_percentage, 
                                order = Barcode, fill = Barcode)) +
  geom_bar(stat='identity') +
  ylab('Percentage of filtered reads')  +
  xlab('Barcode') +
  theme(axis.text = element_text(size=12),
        axis.title = element_text(size=14, face = 'bold'),
        legend.position = 'none') +
  ylim(0, 100) +
  coord_flip()

Edit rates

barcodeTable$edit_percentage <- 
  barcodeTable$Reads_Edited * 100/barcodeTable$Reads_Filtered
barcodeTable$edit_percentage[is.nan(barcodeTable$edit_percentage)] <- 0  

ggplot(data = barcodeTable, aes(x = as.factor(Barcode), y = edit_percentage, order = Barcode)) +
  geom_bar(stat = 'identity') +
  ylab('Percentage of reads (not filtered) that have edits')  +
  theme(axis.text = element_text(size=12),
        axis.title = element_text(size=14, face = 'bold')) +
  ylim(0,100) +
  xlab('Barcode') +
  coord_flip() +
  geom_text(aes(x = as.factor(Barcode), 
                y = edit_percentage, label = Reads_Edited), hjust = -1)

Frameshift

barcodeTable$frameshift_percentage <- 
  barcodeTable$Reads_Frameshifted * 100/barcodeTable$Reads_Filtered
barcodeTable$frameshift_percentage[is.nan(barcodeTable$frameshift_percentage)] <- 0  

ggplot(data = barcodeTable, aes(x = as.factor(Barcode), 
                                y = frameshift_percentage, order = Barcode)) +
  geom_bar(position = 'stack', stat = 'identity') +
  ylab('Percentage of reads (not filtered) that have frameshift')  +
  xlab('Barcode') +
  theme(axis.text = element_text(size=12),
        axis.title = element_text(size=14,face = 'bold')) +
  ylim(0, 100) +
  coord_flip() +
  geom_text(aes(x = as.factor(Barcode), 
                y = frameshift_percentage, label = Reads_Frameshifted), hjust = -1)

Heterogeneity of reads

plot_heterogeneity(alignments, config, level = 'Barcode')

if (file.exists(params$unassigned_folder) && 
    !any(is.na(config$Forward_Reads_File)) && !any(is.na(config$Reverse_Reads_File))) {
  unassigned_reads <- data.table::fread(params$unassigned_folder)
  data.table::setDF(unassigned_reads)

  cat("# Top unassigned reads  \n\n***  \n\n")
  for (b in unique(unassigned_reads$Barcode)) {
    cat("## ", b, "  \n\n", sep = "")
    b_unassiged <- unassigned_reads[unassigned_reads$Barcode == b, ]
    b_unassiged <- b_unassiged[order(b_unassiged$BarcodeFrequency, decreasing = TRUE), ]
    if (dim(b_unassiged)[1] == 0) {
      cat(knitr::asis_output("No unassigned reads in this barcode. That\'s great!  \n\n"))
    } else {
      topN <- if (dim(b_unassiged)[1] < params$top) dim(b_unassiged)[1] else params$top
      cat('\n')
      print(knitr::kable(data.frame(Forward = paste0('P', 1:topN),
                                    Reverse = paste0('S', 1:topN),
                                    Counts = b_unassiged[1:topN, 'Total'],
                                    Frequency = b_unassiged[1:topN, 'BarcodeFrequency'])))
      cat("\n")
      cat("<PRE>", paste(amplican_print_reads(b_unassiged[1:topN, 'Forward'],
                                              b_unassiged[1:topN, 'Reverse']),
                         collapse = "\n"), "</PRE>")
      cat("\n\n")
    }
  }
}


valenlab/amplican documentation built on Jan. 28, 2024, 5:10 a.m.