# ==========================================================================
# aggregator: a simple aggregator (R. Gentleman, 2001)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Data are aggregated in the environment env if they are not there then the
# get assigned with initfun, if they are there they get aggregated with agfun
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
.aggregator <- setClass("aggregator",
representation(
aggenv = "environment",
initfun = "function",
aggfun = "function"
),
prototype = list(
initfun = function(name, val) 1,
aggfun = function(name, current, val) current + 1
)
)
# ==========================================================================
# container: lists containing objects of specified class (R. Gentleman, 2001)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
.container <- setClass("container",
representation(
x = "list",
content = "character",
locked = "logical"
),
prototype = list(
x = vector("list", 0),
content = "object",
locked = FALSE
)
)
# ==========================================================================
# phenoData (DEFUNCT)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
setClass("phenoData",
representation(
pData = "data.frame",
varLabels = "list",
varMetadata = "data.frame"
),
contains="Versioned",
validity = function(object) {
paste("class phenoData is defunct,",
"convert using as(<<object>>, \"AnnotatedDataFrame\")")
}
)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
setOldClass("data.frame")
setClassUnion("data.frameOrNULL", c("data.frame", "NULL"))
# ==========================================================================
# MIAxE: a VIRTUAL class for experiment meta-data
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
.MIAxe <- setClass("MIAxE",
representation("VIRTUAL"),
contains="Versioned",
prototype = prototype(.Versioned(versions=c(MIAxE="1.0.0")))
)
# MIAME: a class for microarray data - MIAME information (Rafael A. Irizarry)
# More info: http://www.mged.org/Workgroups/MIAME/miame_1.1.html
.MIAME <- setClass("MIAME",
representation(
name = "character",
lab = "character",
contact = "character",
title = "character",
abstract = "character",
url = "character",
pubMedIds = "character",
samples = "list",
hybridizations = "list",
normControls = "list",
preprocessing = "list",
other = "list"
),
contains=c("MIAxE"),
prototype = prototype(
.Versioned(versions=c(classVersion("MIAxE"), MIAME="1.1.0")),
name = "",
lab = "",
contact = "",
title = "",
abstract = "",
url = "",
pubMedIds = "",
samples = list(),
hybridizations = list(),
normControls = list(),
preprocessing = list(),
other = list()
)
)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# trick so that Plobs works
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
setClassUnion("characterORMIAME", c("MIAME", "character"))
# ==========================================================================
# annotatedDataset (DEFUNCT)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
setClass("annotatedDataset",
representation(
reporterInfo = "data.frameOrNULL",
phenoData = "phenoData",
"VIRTUAL"
),
contains=c("VersionedBiobase"))
# ==========================================================================
# AnnotatedDataFrame: A data.frame, with annotations about columns named
# in the data slot contained in the metadata slot. The data slot has
# columns identifying different entities (e.g., genes, samples) and
# the columns contain attributes of those entities (e.g., control or
# spike-in information for genes, age or sex for samples). The number
# of columns in the data slot equals the number of rows in the
# metadata slot.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
.AnnotatedDataFrame <- setClass("AnnotatedDataFrame",
representation(varMetadata = "data.frame",
data = "data.frame",
dimLabels = "character"),
contains=c("Versioned"),
prototype = prototype(
.Versioned(versions=list(AnnotatedDataFrame="1.1.0")),
varMetadata = new( "data.frame" ),
data = new( "data.frame" ),
dimLabels=c("rowNames", "columnNames")))
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
setClassUnion("AssayData", c("list", "environment"))
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# eSet: A VIRTUAL class containing assay data (typically, one or many
# different sets of results obtained from one or many samples in a
# single experiment), phenotypic data (describing the samples involved
# in the experiment), experimental data (describing the methods and
# protocols used), and an annotation (linking to separately maintained
# chip annotation information).
#
# When assayData contains several sets of results, each set must have
# the same dimension (e.g., columns representing genes, rows
# representing samples, all assayData members providing information
# for the same number of genes and samples).
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
.eSet <- setClass("eSet",
representation(assayData = "AssayData",
phenoData = "AnnotatedDataFrame",
featureData = "AnnotatedDataFrame",
experimentData = "MIAxE",
annotation = "character",
protocolData="AnnotatedDataFrame",
"VIRTUAL"),
contains="VersionedBiobase",
prototype = prototype(
.VersionedBiobase(versions=c(eSet="1.3.0")),
assayData = list(), # use initialize to set as env, so
# different instances have
# different envs
phenoData = .AnnotatedDataFrame(
dimLabels=c("sampleNames", "sampleColumns")),
featureData = .AnnotatedDataFrame(
dimLabels=c("featureNames", "featureColumns")),
annotation = character(),
protocolData = .AnnotatedDataFrame(
dimLabels=c("sampleNames", "sampleColumns"))))
.ExpressionSet <- setClass("ExpressionSet",
representation(experimentData="MIAME"),
contains = "eSet",
prototype = prototype(
.VersionedBiobase(
versions=c(classVersion("eSet"), ExpressionSet="1.0.0")),
experimentData=.MIAME()))
.NChannelSet <- setClass("NChannelSet",
contains = "eSet",
prototype = prototype(
.VersionedBiobase(
versions=c(classVersion("eSet"), NChannelSet="1.0.0")),
phenoData = .AnnotatedDataFrame(
data=data.frame(),
varMetadata=data.frame(
labelDescription=character(0),
channelDescription=factor()))))
.MultiSet <- setClass("MultiSet", # any element in assayData slot
contains = "eSet",
prototype = prototype(
.VersionedBiobase(
versions=c(classVersion("eSet"), MultiSet="1.0.0"))))
.SnpSet <- setClass("SnpSet", # call, callProbability
contains = "eSet",
prototype = prototype(
.VersionedBiobase(
versions=c(classVersion("eSet"), SnpSet="1.0.0"))))
# ==========================================================================
# exprSet (DEFUNCT)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
setClass("exprSet",
representation(
exprs = "matrix",
se.exprs = "matrix",
description = "characterORMIAME",
annotation = "character",
notes = "character"
),
contains = c("annotatedDataset"), # contains VersionedBiobase implicitly
validity = function(object)
paste("class exprSet is defunct,",
"convert using as(<<object>>, \"ExpressionSet\")")
)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
.ScalarObject <- setClass("ScalarObject", contains="VIRTUAL",
validity=function(object) {
if (length(object) != 1L)
paste(class(object), "must have length one")
else
TRUE
})
.ScalarLogical <- setClass("ScalarLogical",
contains=c("ScalarObject", "logical"),
prototype=NA)
.ScalarCharacter <- setClass("ScalarCharacter",
contains=c("ScalarObject", "character"),
prototype="")
.ScalarInteger <- setClass("ScalarInteger",
contains=c("ScalarObject", "integer"),
prototype=NA_integer_)
.ScalarNumeric <- setClass("ScalarNumeric",
contains=c("ScalarObject", "numeric"),
prototype=NA_real_)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.