#' Return a logical vector indicating which are valid SNP markers.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param chr A index to spefcify chromosome to get information.
#' @param ... Unused.
#'
#' @return A logical vector of the same length with
#' the number of total SNP markers
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' validMar(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("validMar", function(object, chr = NULL, ...)
standardGeneric("validMar"))
#' @rdname validMar
#' @param value A logical vector indicating valid markers with the length
#' matching with the number of markers.
#' @export
setGeneric("validMar<-", function(object, value)
standardGeneric("validMar<-"))
#' Return a logical vector indicating which are valid samples.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param parents A logical value to indicate to set FALSE or TRUE
#' to parental samples. If you specify `parents = "only"`, this
#' function returns a logical vector indicating TRUE for only parental samples.
#' @param ... Unused.
#'
#' @return A logical vector of the same length
#' with the number of total samples.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' validSam(gds)
#'
#' # Close the connection the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("validSam", function(object, parents = FALSE, ...)
standardGeneric("validSam"))
#' @rdname validSam
#' @param value A logical vector indicating valid samples with the length
#' matching with the number of samples
#' @export
setGeneric("validSam<-", function(object, value)
standardGeneric("validSam<-"))
#' Return the number of SNPs.
#'
#' This function returns the number of SNPs recorded in the GDS file
#' connected to the given [GbsrGenotypeData] object.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param valid A logical value. See details.
#' @param chr A index to spefcify chromosome to get information.
#' @param ... Unused.
#'
#' @details
#' If `valid = TRUE`, the number of markers which are labeled `TRUE` in the
#' "valid" column of the "marker" slot will be returned. If you need the number
#' of over all markers, set `valid = FALSE`. [validMar()] tells you
#' which markers are valid.
#'
#' @return An integer value to indicate the number of SNP markers.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' nmar(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @seealso [validMar()]
#'
#' @export
#'
setGeneric("nmar", function(object, valid = TRUE, chr = NULL, ...)
standardGeneric("nmar"))
#' Return the number of samples.
#'
#' This function returns the number of samples recorded in the GDS file
#' connected to the given [GbsrGenotypeData] object.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param valid A logical value. See details.
#' @param parents A logical value whether to include to parental samples or not.
#' @param ... Unused.
#'
#' @details
#' If `valid = TRUE`, the number of the samples which are labeled `TRUE`
#' in the "valid" column of the "sample" slot will be returned. If you need
#' the number of over all samples, set `valid = FALSE`.
#' [validSam()] tells you which samples are valid.
#'
#' @return An integer value to indicate the number of samples.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' nsam(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @seealso [validSam()]
#'
#'@export
#'
setGeneric("nsam", function(object, valid = TRUE, parents = FALSE, ...)
standardGeneric("nsam"))
#' Obtain chromosome IDs of markers
#'
#' This function returns chromosome IDs of markers.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param valid A logical value. See details.
#' @param ... Unused.
#'
#' @return A vector of factors indicating chromosome IDs.
#'
#' @details
#' If `valid = TRUE`, the chromosome IDs of the markers which are labeled `TRUE`
#' in the "valid" column of the "marker" slot will be returned. If you need the
#' number of over all markers, set `valid = FALSE`. [validMar()] tells you
#' which markers are valid.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' getChromosome(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
#'
setGeneric("getChromosome", function(object, valid = TRUE, ...)
standardGeneric("getChromosome"))
#' Obtain marker positions
#'
#' This function returns physical positions of markers.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param valid A logical value. See details.
#' @param chr A integer or string to specify chromosome to get information.
#' @param ... Unused.
#'
#' @return An integer vector indicating the physical positions of markers.
#'
#' @details
#' If `valid = TRUE`, the positions of the markers which are labeled `TRUE` in
#' the "valid" column of the "marker" slot will be returned. If you need the
#' positions of over all markers, set `valid = FALSE`. [validMar()] tells you
#' which markers are valid.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' getPosition(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("getPosition", function(object, valid = TRUE, chr = NULL, ...)
standardGeneric("getPosition"))
#' Obtain reference allele information of markers
#'
#' This function returns the reference allele and alternative allele(s).
#'
#' @param object A [GbsrGenotypeData] object.
#' @param valid A logical value. See details.
#' @param chr A index to spefcify chromosome to get information.
#' @param ... Unused.
#' @return A vector of strings each of which is a "/" separated string and
#' indicates the reference allele and the alternative allele(s) at a marker.
#'
#' @details
#' If `valid = TRUE`, the alleles of markers which are labeled `TRUE` in the
#' "valid" column of the "marker" slot will be returned. If you need the number
#' of over all markers, set `valid = FALSE`. [validMar()] tells you
#' which markers are valid.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' getAllele(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("getAllele", function(object, valid = TRUE, chr = NULL, ...)
standardGeneric("getAllele"))
#' Obtain the marker IDs
#'
#' @param object A [GbsrGenotypeData] object.
#' @param valid A logical value. See details.
#' @param chr A index to specify chromosome to get information.
#' @param ... Unused.
#'
#' @return A integer vector of marker IDs.
#'
#' @details
#' If `valid = TRUE`, the IDs of markers which are labeled `TRUE` in the "valid"
#' column of the "marker" slot will be returned. If you need the number
#' of over all markers, set `valid = FALSE`. [validMar()] tells you
#' which markers are valid.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' getMarID(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("getMarID", function(object, valid = TRUE, chr = NULL, ...)
standardGeneric("getMarID"))
#' Obtain the sample IDs
#'
#' This function returns sample IDs.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param valid A logical value. See details.
#' @param parents A logical value whether to include data for parents or not.
#' @param ... Unused.
#'
#' @return A character vector of sample IDs.
#'
#' @details
#' If `valid = TRUE`, the IDs of samples which are labeled `TRUE` in the "valid"
#' column of the "sample" slot will be returned. If you need the number
#' of over all samples, set `valid = FALSE`. [validSam()] tells you
#' which samples are valid.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' getSamID(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("getSamID", function(object, valid = TRUE, parents = FALSE, ...)
standardGeneric("getSamID"))
#' Obtain information stored in the "annotation/info" node
#'
#' The "annotation/info" node stores annotation infromation of markers obtained
#' via SNP calling tools like bcftools and GATK.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param var A string to indicate which annotation info should be retrieved.
#' @param valid A logical value. See details.
#' @param chr A index to specify chromosome to get information.
#' @param ... Unused.
#'
#' @return A numeric vector of data stored in INFO node of the GDS file.
#'
#' @details
#' If `valid = TRUE`, the information of the markers which are labeled `TRUE`
#' in the "valid" column of the "marker" slot will be returned. If you need the
#' number of over all markers, set `valid = FALSE`. [validMar()] tells you
#' which markers are valid.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Get mapping qualities (MQ) of markers.
#' mq <- getInfo(gds, "MQ")
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#' @export
#'
setGeneric("getInfo", function(object, var, valid = TRUE, chr = NULL, ...)
standardGeneric("getInfo"))
#' Get read count data.
#'
#' Read counts for reference allele and alternative allele are retrieved
#' from the GDS file linked to the given [GbsrGenotypeData] object.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param node Either of "raw" and "filt". See details.
#' @param parents A logical value or "only" whether to include data for
#' parents or not or to get data only for parents.
#' @param valid A logical value. See details.
#' @param chr An integer vector of indexes indicating
#' chromosomes to get read count data.
#' @param ... Unused.
#'
#' @return A named list with two elements "ref" and "alt" storing
#' a matrix of reference allele read counts and a matrix of
#' alternative read counts for all markers in all samples.
#'
#' @details
#' When `node = "raw`, the raw read counts stored in the
#' "annotation/format/AD/data" node will be returned, while `node = "filt` make
#' the function to return the filtered read counts stored in the
#' "annotation/format/FAD/data" that can be generated via the [setCallFilter()]
#' function.
#' If `valid = TRUE`, read counts for only valid marker and valid samples will
#' be obtained.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' read <- getRead(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @seealso [setCallFilter()]
#'
#' @export
#'
setGeneric("getRead", function(object, node = "raw", parents = FALSE,
valid = TRUE, chr = NULL, ...)
standardGeneric("getRead"))
#' Get genotype call data.
#'
#' Genotype calls are retrieved from the GDS file linked to the given
#' [GbsrGenotypeData] object.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param node Either of "raw", "filt", "cor", and "parents". See details.
#' @param parents A logical value or "only" whether to include data for
#' parents or not or to get data only for parents. Ignored if `node = "parents`.
#' @param valid A logical value. See details.
#' @param chr A integer vector of indexes indicating chromosomes
#' to get read count data.
#' @param phased If set `TRUE` to `phased`, the function will return phased
#' genotype data in a P x N x M array where P, N, and M are the ploidy, number
#' of samples, and number of markers.
#' @param ... Unused.
#'
#' @return An integer matirix of genotype data which is represented
#' by the number of reference alleles at each marker of each sample.
#'
#' @details
#' When `node = "raw`, the raw genotype data stored in the "genotype/data" node
#' will be returned, while `node = "filt` make the function to return the
#' filtered genotype data stored in the "annotation/format/FGT/data" that can
#' be generated via the [setCallFilter()] function. `node = "cor` indicates to
#' get the corrected genotype data stored in the "annotation/format/CGT/data"
#' that can be generated via the [estGeno()] function. The estimated parental
#' genotypes, which also can be generated via the [estGeno()] function and
#' stored in the "annotation/info/PGT" node, can be obtained with
#' `node = "parents"`.
#' If `valid = TRUE`, genotype calls for only valid marker and valid samples
#' will be obtained.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' geno <- getGenotype(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#'
#' @seealso [setCallFilter()] and [estGeno()]
#'
#' @export
#'
setGeneric("getGenotype", function(object,
node = "raw",
parents = FALSE,
valid = TRUE,
chr = NULL,
phased = FALSE,
...)
standardGeneric("getGenotype"))
#' Get haplotype call data.
#'
#' Haplotype calls are retrieved from the GDS file linked to the given
#' [GbsrGenotypeData] object.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param valid A logical value. See details.
#' @param chr A integer vector of indexes indicating chromosomes
#' to get read count data.
#' @param parents A logical value or "only" to include data for
#' parents or to get data only for parents.
#' @param ... Unused.
#'
#' @details
#' Haplotype call data can be obtained from the "estimated.haplotype" node of
#' the GDS file which can be generated via the [estGeno()] function.
#' Thus, this function is valid only after having executed [estGeno()].
#' If `valid = TRUE`, read counts for only valid marker and valid samples will
#' be obtained.
#'
#' @return An integer array of haplotype data. The array have 2 x M x N
#' dimensions, where M is the number of markers and N is the number of
#' samples. Each integer values represent the origin of the haplotype.
#' For example, in the population with two inbred founders, values take
#' either 1 or 2 indicating the hapotype descent from founder 1 and 2.
#' If two outbred founders, values take 1, 2, 3, or 4 indicating
#' the first and second haplotype in founder 1 and the first and
#' second haplotype in founder 2.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Find the IDs of parental samples.
#' parents <- grep("Founder", getSamID(gds), value = TRUE)
#'
#' # Set the parents and flip allele information
#' # if the reference sample (Founder1 in our case) has homozygous
#' # alternative genotype at some markers of which alleles will
#' # be swapped to make the reference sample have homozygous
#' # reference genotype.
#' gds <- setParents(gds, parents = parents)
#'
#' # Initialize a scheme object stored in the slot of the GbsrGenotypeData.
#' # We chose `crosstype = "pair"` because two inbred founders were mated
#' # in our breeding scheme.
#' # We also need to specify the mating matrix which has two rows and
#' # one column with integers 1 and 2 indicating a sample (founder)
#' # with the memberID 1 and a sample (founder) with the memberID 2
#' # were mated.
#' gds <- initScheme(gds, mating = cbind(c(1:2)))
#'
#' # Add information of the next cross conducted in our scheme.
#' # We chose 'crosstype = "selfing"', which do not require a
#' # mating matrix.
#' gds <- addScheme(gds, crosstype = "selfing")
#'
#' # Execute error correction by estimating genotype and haplotype of
#' # founders and offspring.
#' gds <- estGeno(gds)
#'
#' hap <- getHaplotype(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @seealso [estGeno()]
#'
#' @export
#'
setGeneric("getHaplotype", function(object, parents = FALSE, valid = TRUE,
chr = NULL, ...)
standardGeneric("getHaplotype"))
#' Obtain total reference read counts per SNP or per sample
#'
#' @param object A [GbsrGenotypeData] object.
#' @param target Either of "marker" and "sample".
#' @param valid A logical value. See details.
#' @param prop A logical value whether to return values as proportions of
#' total reference read counts in total read counts per SNP or not.
#' @param ... Unused.
#'
#' @return A numeric vector of (proportion of) reference read
#' counts per marker.
#'
#' @details
#' You need to execute [countRead()] to calculate sumaary statisticsto be
#' obtained via this function.
#' If `valid = TRUE`, the chromosome information of markers which are
#' labeled `TRUE` in the [sample] slot will be returned.
#' [validMar()] tells you which samples are valid.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#' gds <- countRead(gds)
#'
#' getCountReadRef(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("getCountReadRef", function(object,
target = "marker",
valid = TRUE,
prop = FALSE,
...)
standardGeneric("getCountReadRef"))
#' Obtain total alternative read counts per SNP or per sample
#'
#' @param object A [GbsrGenotypeData] object.
#' @param target Either of "marker" and "sample".
#' @param valid A logical value. See details.
#' @param prop A logical value whether to return values as proportions
#' of total alternative read counts in total read counts per SNP or not.
#' @param ... Unused.
#'
#' @return A numeric vector of (proportion of) alternative
#' allele read counts per marker.
#'
#' @details
#' You need to execute [countRead()] to calculate sumaary statisticsto be
#' obtained via this function.
#' If `valid = TRUE`, the chromosome information of markers which are
#' labeled `TRUE` in the [sample] slot will be returned.
#' [validMar()] tells you which samples are valid.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#' gds <- countRead(gds)
#'
#' getCountReadAlt(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("getCountReadAlt", function(object,
target = "marker",
valid = TRUE,
prop = FALSE,
...)
standardGeneric("getCountReadAlt"))
#' Obtain total read counts per SNP or per sample
#'
#' @param object A [GbsrGenotypeData] object.
#' @param target Either of "marker" and "sample".
#' @param valid A logical value. See details.
#' @param ... Unused.
#'
#' @details
#' You need to execute [countRead()] to calculate sumaary statisticsto be
#' obtained via this function.
#' If `valid = TRUE`, the chromosome information of markers which are
#' labeled `TRUE` in the [sample] slot will be returned.
#' [validMar()] tells you which samples are valid.
#'
#' @return A integer vector of total read counts
#' (reference allele reads + alternative allele reads) per marker.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#' gds <- countRead(gds)
#'
#' getCountRead(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("getCountRead", function(object,
target = "marker",
valid = TRUE,
...)
standardGeneric("getCountRead"))
#' Obtain total reference genotype counts per SNP or per sample
#'
#' @param object A [GbsrGenotypeData] object.
#' @param target Either of "marker" and "sample".
#' @param prop A logical value whether to return values as
#' proportions of total reference genotype counts to total
#' non missing genotype counts or not.
#' @param valid A logical value. See details.
#' @param ... Unused.
#'
#' @details
#' You need to execute [countGenotype()] to calculate sumaary statisticsto be
#' obtained via this function.
#' If `valid = TRUE`, the chromosome information of markers which are
#' labeled `TRUE` in the [sample] slot will be returned.
#' [validMar()] tells you which samples are valid.
#'
#' @return A numeric vector of (proportion of) homozygous reference
#' genotype calls per marker.
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Summarize the genotype count information and store them in the
#' # [marker] and [sample] slots of the [GbsrGenotypeData] object.
#' gds <- countGenotype(gds)
#'
#' getCountGenoRef(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("getCountGenoRef", function(object,
target = "marker",
valid = TRUE,
prop = FALSE,
...)
standardGeneric("getCountGenoRef"))
#' Obtain total heterozygote counts per SNP or per sample
#'
#' @param object A [GbsrGenotypeData] object.
#' @param target Either of "marker" and "sample".
#' @param prop A logical value whether to return values as proportions of
#' total heterozygote counts to total non missing genotype counts or not.
#' @param valid A logical value. See details.
#' @param ... Unused.
#'
#' @details
#' You need to execute [countGenotype()] to calculate sumaary statisticsto be
#' obtained via this function.
#' If `valid = TRUE`, the chromosome information of markers which are
#' labeled `TRUE` in the [sample] slot will be returned.
#' [validMar()] tells you which samples are valid.
#'
#' @return A numeric vector of (proportion of) heterozugous
#' genotype calls per marker.
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Summarize the genotype count information and store them in the
#' # [marker] and [sample] slots of the [GbsrGenotypeData] object.
#' gds <- countGenotype(gds)
#'
#' getCountGenoHet(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("getCountGenoHet", function(object,
target = "marker",
valid = TRUE,
prop = FALSE,
...)
standardGeneric("getCountGenoHet"))
#' Obtain total alternative genotype counts per SNP or per sample
#'
#' @param object A [GbsrGenotypeData] object.
#' @param target Either of "marker" and "sample".
#' @param prop A logical value whether to return values as
#' proportions of total alternative genotype counts to total
#' non missing genotype counts or not.
#' @param valid A logical value. See details.
#' @param ... Unused.
#'
#' @details
#' You need to execute [countGenotype()] to calculate sumaary statisticsto be
#' obtained via this function.
#' If `valid = TRUE`, the chromosome information of markers which are
#' labeled `TRUE` in the [sample] slot will be returned.
#' [validMar()] tells you which samples are valid.
#'
#' @return A numeric vector of (proportion of) homozygous alternative
#' genotype calls per marker.
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Summarize the genotype count information and store them in the
#' # [marker] and [sample] slots of the [GbsrGenotypeData] object.
#' gds <- countGenotype(gds)
#'
#' getCountGenoAlt(gds)
#'
#' # Close the connection to the GDS file
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("getCountGenoAlt", function(object,
target = "marker",
valid = TRUE,
prop = FALSE,
...)
standardGeneric("getCountGenoAlt"))
#' Obtain total missing genotype counts per SNP or per sample
#'
#' @param object A [GbsrGenotypeData] object.
#' @param target Either of "marker" and "sample".
#' @param prop A logical value whether to return values as proportions
#' of total missing genotype counts to the total genotype calls or not.
#' @param valid A logical value. See details.
#' @param ... Unused.
#'
#' @details
#' You need to execute [countGenotype()] to calculate sumaary statisticsto be
#' obtained via this function.
#' If `valid = TRUE`, the chromosome information of markers which are
#' labeled `TRUE` in the [sample] slot will be returned.
#' [validMar()] tells you which samples are valid.
#'
#' @return A numeric vector of (proportion of)
#' missing genotype calls per marker.
#' @examples
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#' gds <- countGenotype(gds)
#' getCountGenoMissing(gds)
#' closeGDS(gds) # Close the connection to the GDS file
#'
#' @export
#'
setGeneric("getCountGenoMissing", function(object,
target = "marker",
valid = TRUE,
prop = FALSE,
...)
standardGeneric("getCountGenoMissing"))
#' Obtain total reference allele counts per SNP or per sample
#'
#' @param object A [GbsrGenotypeData] object.
#' @param target Either of "marker" and "sample".
#' @param prop A logical value whether to return values as proportions
#' of total reference allele counts to total non missing allele counts or not.
#' @param valid A logical value. See details.
#' @param ... Unused.
#'
#' @details
#' You need to execute [countGenotype()] to calculate sumaary statisticsto be
#' obtained via this function.
#' If `valid = TRUE`, the chromosome information of markers which are
#' labeled `TRUE` in the [sample] slot will be returned.
#' [validMar()] tells you which samples are valid.
#'
#' @return A numeric vector of (proportion of) reference alleles per marker.
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Summarize the genotype count information and store them in the
#' # [marker] and [sample] slots of the [GbsrGenotypeData] object.
#' gds <- countGenotype(gds)
#'
#' getCountAlleleRef(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("getCountAlleleRef", function(object,
target = "marker",
valid = TRUE,
prop = FALSE,
...)
standardGeneric("getCountAlleleRef"))
#' Obtain total alternative allele counts per SNP or per sample
#'
#' @param object A [GbsrGenotypeData] object.
#' @param target Either of "marker" and "sample".
#' @param prop A logical value whether to return values as proportions
#' of total alternative allele counts to total non missing allele
#' counts or not.
#' @param valid A logical value. See details.
#' @param ... Unused.
#'
#' @details
#' You need to execute [countGenotype()] to calculate sumaary statisticsto be
#' obtained via this function.
#' If `valid = TRUE`, the chromosome information of markers which are
#' labeled `TRUE` in the [sample] slot will be returned.
#' [validMar()] tells you which samples are valid.
#'
#' @return A numeric vector of (proportion of) alternative alleles per marker.
#' @examples
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#' gds <- countGenotype(gds)
#' getCountAlleleAlt(gds)
#' closeGDS(gds) # Close the connection to the GDS file
#'
#' @export
#'
setGeneric("getCountAlleleAlt", function(object,
target = "marker",
valid = TRUE,
prop = FALSE,
...)
standardGeneric("getCountAlleleAlt"))
#' Obtain total missing allele counts per SNP or per sample
#'
#' @param object A [GbsrGenotypeData] object.
#' @param target Either of "marker" and "sample".
#' @param prop A logical value whether to return values as proportions of
#' total missing allele counts to the total allele number or not.
#' @param valid A logical value. See details.
#' @param ... Unused.
#'
#' @details
#' You need to execute [countGenotype()] to calculate sumaary statisticsto be
#' obtained via this function.
#' If `valid = TRUE`, the chromosome information of markers which are
#' labeled `TRUE` in the [sample] slot will be returned.
#' [validMar()] tells you which samples are valid.
#'
#' @return A numeric vector of (proportion of) missing alleles per marker.
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Summarize the genotype count information and store them in the
#' # [marker] and [sample] slots of the [GbsrGenotypeData] object.
#' gds <- countGenotype(gds)
#'
#' getCountAlleleMissing(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("getCountAlleleMissing", function(object,
target = "marker",
valid = TRUE,
prop = FALSE,
...)
standardGeneric("getCountAlleleMissing"))
#' Obtain mean values of total reference read counts per
#' SNP or per sample
#'
#' @param object A [GbsrGenotypeData] object.
#' @param target Either of "marker" and "sample".
#' @param valid A logical value. See details.
#' @param ... Unused.
#'
#' @details
#' You need to execute [countRead()] to calculate summary statistics to be
#' obtained via this function.
#' If `valid = TRUE`, the chromosome information of markers which are
#' labeled `TRUE` in the [sample] slot will be returned.
#' [validMar()] tells you which samples are valid.
#'
#' @return A numeric vector of the mean values of
#' reference allele reads per marker.
#' @examples
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#' gds <- countRead(gds)
#' getMeanReadRef(gds)
#' closeGDS(gds) # Close the connection to the GDS file
#'
#' @export
#'
setGeneric("getMeanReadRef", function(object,
target = "marker",
valid = TRUE,
...)
standardGeneric("getMeanReadRef"))
#' Obtain mean values of total alternative read counts
#' per SNP or per sample
#'
#' @param object A [GbsrGenotypeData] object.
#' @param target Either of "marker" and "sample".
#' @param valid A logical value. See details.
#' @param ... Unused.
#'
#' @details
#' You need to execute [countRead()] to calculate sumaary statisticsto be
#' obtained via this function.
#' If `valid = TRUE`, the chromosome information of markers which are
#' labeled `TRUE` in the [sample] slot will be returned.
#' [validMar()] tells you which samples are valid.
#'
#' @return A numeric vector of the mean values of
#' alternative allele reads per marker.
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Calculate means, standard deviations, quantiles of read counts
#' # per marker and per sample with or without standardization of
#' # the counts and store them in the [marker] and [sample] slots
#' # of the [GbsrGenotypeData] object.
#' gds <- countRead(gds)
#'
#' getMeanReadAlt(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("getMeanReadAlt", function(object,
target = "marker",
valid = TRUE,
...)
standardGeneric("getMeanReadAlt"))
#' Obtain standard deviations of total reference read counts
#' per SNP or per sample
#'
#' @param object A [GbsrGenotypeData] object.
#' @param target Either of "marker" and "sample".
#' @param valid A logical value. See details.
#' @param ... Unused.
#'
#' @details
#' You need to execute [countRead()] to calculate summary statistics to be
#' obtained via this function.
#' If `valid = TRUE`, the chromosome information of markers which are
#' labeled `TRUE` in the [sample] slot will be returned.
#' [validMar()] tells you which samples are valid.
#'
#'
#' @return A numeric vector of the standard deviations of
#' reference allele reads per marker.
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Calculate means, standard deviations, quantiles of read counts
#' # per marker and per sample with or without standardization of
#' # the counts and store them in the [marker] and [sample] slots
#' # of the [GbsrGenotypeData] object.
#' gds <- countRead(gds)
#'
#' getSDReadRef(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("getSDReadRef", function(object,
target = "marker",
valid = TRUE,
...)
standardGeneric("getSDReadRef"))
#' Obtain standard deviations of total alternative read counts per
#' SNP or per sample
#'
#' @param object A [GbsrGenotypeData] object.
#' @param target Either of "marker" and "sample".
#' @param valid A logical value. See details.
#' @param ... Unused.
#'
#' @details
#' You need to execute [countRead()] to calculate sumaary statisticsto be
#' obtained via this function.
#' If `valid = TRUE`, the chromosome information of markers which are
#' labeled `TRUE` in the [sample] slot will be returned.
#' [validMar()] tells you which samples are valid.
#'
#' @return A numeric vector of the standard deviations of
#' alternative allele reads per marker.
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Calculate means, standard deviations, quantiles of read counts
#' # per marker and per sample with or without standardization of
#' # the counts and store them in the [marker] and [sample] slots
#' # of the [GbsrGenotypeData] object.
#' gds <- countRead(gds)
#'
#' getSDReadAlt(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("getSDReadAlt", function(object,
target = "marker",
valid = TRUE,
...)
standardGeneric("getSDReadAlt"))
#' Obtain quantile values of total reference read counts per
#' SNP or per sample
#'
#' @param object A [GbsrGenotypeData] object.
#' @param target Either of "marker" and "sample".
#' @param valid A logical value. See details.
#' @param ... Unused.
#'
#' @details
#' You need to execute [countRead()] to calculate sumaary statisticsto be
#' obtained via this function.
#' If `valid = TRUE`, the chromosome information of markers which are
#' labeled `TRUE` in the [sample] slot will be returned.
#' [validMar()] tells you which samples are valid.
#'
#' @return A numeric vector of the quantile values of
#' alternative allele reads per marker.
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Calculate means, standard deviations, quantiles of read counts
#' # per marker and per sample with or without standardization of
#' # the counts and store them in the [marker] and [sample] slots
#' # of the [GbsrGenotypeData] object.
#' gds <- countRead(gds)
#'
#' getMedianReadRef(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("getMedianReadRef", function(object,
target = "marker",
valid = TRUE,
...)
standardGeneric("getMedianReadRef"))
#' Obtain quantile values of total alternative read counts per
#' SNP or per sample
#'
#' @param object A [GbsrGenotypeData] object.
#' @param target Either of "marker" and "sample".
#' @param valid A logical value. See details.
#' @param ... Unused.
#'
#' @details
#' You need to execute [countRead()] to calculate sumaary statisticsto be
#' obtained via this function.
#' If `valid = TRUE`, the chromosome information of markers which are
#' labeled `TRUE` in the [sample] slot will be returned.
#' [validMar()] tells you which samples are valid.
#'
#' @return A numeric vector of the quantile values of
#' alternative allele reads per marker.
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Calculate means, standard deviations, quantiles of read counts
#' # per marker and per sample with or without standardization of
#' # the counts and store them in the [marker] and [sample] slots
#' # of the [GbsrGenotypeData] object.
#' gds <- countRead(gds)
#'
#' getMedianReadAlt(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("getMedianReadAlt", function(object,
target = "marker",
valid = TRUE,
...)
standardGeneric("getMedianReadAlt"))
#' Obtain minor allele frequencies per SNP or per sample
#'
#' @param object A [GbsrGenotypeData] object.
#' @param target Either of "marker" and "sample".
#' @param valid A logical value. See details.
#' @param ... Unused.
#'
#' @details
#' You need to execute [countGenotype()] to calculate sumaary statisticsto be
#' obtained via this function.
#' If `valid = TRUE`, the chromosome information of markers which are
#' labeled `TRUE` in the [sample] slot will be returned.
#' [validMar()] tells you which samples are valid.
#'
#' @return A numeric vector of the minor allele frequencies per marker.
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Summarize the genotype count information and store them in the
#' # [marker] and [sample] slots of the [GbsrGenotypeData] object.
#' gds <- countGenotype(gds)
#'
#' getMAF(gds)
#'
#' # Close the connection to the GDS file
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("getMAF", function(object,
target = "marker",
valid = TRUE,
...)
standardGeneric("getMAF"))
#' Obtain minor allele counts per SNP or per sample
#'
#' @param object A [GbsrGenotypeData] object.
#' @param target Either of "marker" and "sample".
#' @param valid A logical value. See details.
#' @param ... Unused.
#'
#' @details
#' You need to execute [countGenotype()] to calculate sumaary statisticsto be
#' obtained via this function.
#' If `valid = TRUE`, the chromosome information of markers which are
#' labeled `TRUE` in the [sample] slot will be returned.
#' [validMar()] tells you which samples are valid.
#'
#' @return A numeric vector of the minor allele counts per marker.
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Summarize the genotype count information and store them in the
#' # [marker] and [sample] slots of the [GbsrGenotypeData] object.
#' gds <- countGenotype(gds)
#'
#' getMAC(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("getMAC", function(object,
target = "marker",
valid = TRUE,
...)
standardGeneric("getMAC"))
#' Get parental sample information
#'
#' This function returns sample IDs, member IDs and indexes of parental samples
#' set via [setParents()]. Sample IDs are IDs given by user or obtained from the
#' original VCF file. Member IDs are serial numbers assigned by [setParents()].
#'
#' @param object A [GbsrGenotypeData] object.
#' @param bool If TRUE, the function returns a logical vector indicating
#' which samples have been set as parents.
#' @param verbose If FALSE, the function does not print a warning message even
#' when parents were not specified in the given [GbsrGenotypeData] object. The
#' setting `verbose = FALSE` is used in the other functions to call
#' `getParents()` without evoking unnecessary warnings to users.
#' @param ... Unused.
#'
#' @export
#'
#' @return A data frame of parents information indicating sampleIDs, memberIDs
#' and indexes of parental lines assigned via [setParents()].
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Find the IDs of parental samples.
#' parents <- grep("Founder", getSamID(gds), value = TRUE)
#'
#' # Set the parents.
#' gds <- setParents(gds, parents = parents)
#'
#' # Get the information of parents.
#' getParents(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#'
setGeneric("getParents", function(object,
bool = FALSE,
verbose = TRUE,
...)
standardGeneric("getParents"))
#' Reopen the connection to the GDS file.
#'
#' @param object A [GbsrGenotypeData] object.
#'
#' @details The GbsrGenotypeData object stores the file path of the GDS file
#' even after closing the connection the file. This function open again the
#' connection to the GDS file at the file path stored in the GbsrGenotypeData
#' object. If the GbsrGenotypeData object witch has an open connection to
#' the GDS file, this function will reopen the connection. The data stored in
#' the marker and sample slots will not be changed.
#' Thus, you can open a connection with the GDS file with keeping information
#' of filtering and summary statistics.
#'
#' @return A [GbsrGenotypeData] object.
#' @param ... Unused.
#'
#' @export
#'
#' @examples
#' # Use a GDS file of example data.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#'
#' # Instantiation of [GbsrGenotypeData]
#' gds <- loadGDS(gds_fn)
#'
#' # Close the connection to the GDS file
#' closeGDS(gds)
#'
#' gds <- reopenGDS(gds)
#'
#' # Close the connection to the GDS file
#' closeGDS(gds)
setGeneric("reopenGDS", function(object, ...) standardGeneric("reopenGDS"))
#' Check if a GDS file has been opened or not.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param ... Unused.
#'
#' @return `TRUE` if the GDS file linked to the input [GbsrGenotypeData] object
#' has been opened, while `FALSE` if closed.
#'
#' @examples
#' # Use a GDS file of example data.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#'
#' # Instantiation of [GbsrGenotypeData]
#' gds <- loadGDS(gds_fn)
#'
#' # Check connection to the GDS file
#' isOpenGDS(gds)
#'
#' # Close the connection to the GDS file
#' closeGDS(gds)
#'
#'@export
#'
setGeneric("isOpenGDS", function(object, ...)
standardGeneric("isOpenGDS"))
#' Close the connection to the GDS file
#'
#' Close the connection to the GDS file linked to the given
#' [GbsrGenotypeData] object.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param save_filter A logical whether to save the filtering information made
#' via [setSamFilter()] and [setMarFilter()] in the GDS file. The saved
#' filter information can be reused if set `load_filter = TRUE` for
#' [loadGDS()].
#' @param verbose if TRUE, show information.
#' @param ... Unused.
#'
#' @return NULL.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Close the connection to the GDS file
#' closeGDS(gds)
#'
#'@export
#'
setGeneric("closeGDS", function(object, save_filter = FALSE, verbose = TRUE, ...)
standardGeneric("closeGDS"))
#' Set labels to samples which should be recognized as
#' parents of the population to be subjected to error correction.
#'
#' Specify two or more samples in the dataset as parents
#' of the population. Markers will be filtered out up on your specification.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param parents A vector of strings with at least length two.
#' The specified strings should match with the samples
#' ID available via [getSamID()].
#' @param nonmiss A logical value whether to filter out markers which
#' are missing in parents.
#' @param mono A logical value whether to filter out markers which
#' are not monomorphic in parents.
#' @param bi A logical value whether to filter out marekrs which
#' are not biallelic between parents.
#' @param ... Unused.
#'
#' @details
#' The `clean` function of [GBScleanR] uses read count information of
#' samples and their parents separately to estimate most probable
#' genotype calls of them. Therefore, you must specify proper samples
#' as parents via this function. If you would like to remove SNP markers
#' which are not biallelic and/or not monomorphic in each parent,
#' set `mono = TRUE` and `bi = TRUE`. The replicates of parental samples
#' specified to the `repliate` argument of [setParents()] will have the same
#' genotypes at all markers in the estimated genotypes obtained via [estGeno()].
#' In the genotype estimation by [estGeno()], the Viterbi scores for each
#' possible genotype at each marker for the replicates will be replaced with
#' the average score for the replicates.
#'
#' @return A [GbsrGenotypeData] object with parents information.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Find the IDs of parental samples.
#' parents <- grep("Founder", getSamID(gds), value = TRUE)
#'
#' # Set the parents and flip allele information
#' # if the reference sample (Founder1 in our case) has homozygous
#' # alternative genotype at some markers of which alleles will
#' # be swapped to make the reference sample have homozygous
#' # reference genotype.
#' gds <- setParents(gds, parents = parents)
#'
#' # Initialize a scheme object stored in the slot of the GbsrGenotypeData.
#' # We chose `crosstype = "pair"` because two inbred founders were mated
#' # in our breeding scheme.
#' # We also need to specify the mating matrix which has two rows and
#' # one column with integers 1 and 2 indicating a sample (founder)
#' # with the memberID 1 and a sample (founder) with the memberID 2
#' # were mated.
#' gds <- initScheme(gds, mating = cbind(c(1:2)))
#'
#' # Add information of the next cross conducted in our scheme.
#' # We chose 'crosstype = "selfing"', which do not require a
#' # mating matrix.
#' gds <- addScheme(gds, crosstype = "selfing")
#'
#' # Execute error correction by estimating genotype and haplotype of
#' # founders and offspring.
#' gds <- estGeno(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("setParents", function(object,
parents,
nonmiss = FALSE,
mono = FALSE,
bi = FALSE,
...)
standardGeneric("setParents"))
#' Set identifiers to indicates which samples are replicates.
#'
#' Not implemented yet.
#' This function assign identifiers that indicates which samples are replicates
#' those which should have the same genotypes at all markers.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param replicates A vector of integers, numbers, or characters to indicate
#' grouping of samples as replicates.
#' @param ... Unused.
#'
#' @details
#' The replicates of samples specified in [setReplicates()] will have the same
#' genotypes at all markers in the estimated genotypes obtained via [estGeno()].
#' In the genotype estimation by [estGeno()], the Viterbi scores for each
#' possible genotype (haplotype) at each marker for the replicates will be
#' replaced with the average score for the replicates.
#'
#' @return A [GbsrGenotypeData] object with genotype count information.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' gds <- setParents(gds, parents = c("Founder1", "Founder2"))
#'
#' # When your data has 100 samples, two replicates for each offspring,
#' # and the samples are ordered as the 1st replicate followed by the 2nd
#' # replicate, you can specify replicates as below.
#' # gds <- setReplicates(gds, replicates = rep(1:50, each = 2))
#'
#' # If you need to confirm the order of samples, run the following code.
#' # id <- getSamID(gds)
#'
#' # Replicate IDs should be set also to parents. Therefore, please include
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("setReplicates", function(object,
replicates,
...)
standardGeneric("setReplicates"))
#' Get identifiers to indicates which samples are replicates.
#'
#' Not implemented yet.
#' This function assign identifiers that indicates which samples are replicates
#' those which should have the same genotypes at all markers.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param parents A logical value to indicate whether to include replicate IDs
#' for parental samples in the output. If you specify `parents = "only"`, this
#' function returns replicate IDs only for parental samples.
#' @param ... Unused.
#'
#' @details
#' The replicates of samples specified in [setReplicates()] will have the same
#' genotypes at all markers in the estimated genotypes obtained via [estGeno()].
#' In the genotype estimation by [estGeno()], the Viterbi scores for each
#' possible genotype (haplotype) at each marker for the replicates will be
#' replaced with the average score for the replicates.
#'
#' @return A [GbsrGenotypeData] object with genotype count information.
#'
#' @seealso [setReplicates()]
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' gds <- setParents(gds, parents = c("Founder1", "Founder2"))
#'
#' # When your data has 100 samples, two replicates for each offspring,
#' # and the samples are ordered as the 1st replicate followed by the 2nd
#' # replicate, you can specify replicates as below.
#' # gds <- setReplicates(gds, replicates = rep(1:50, each = 2))
#'
#' # If you need to confirm the order of samples, run the following code.
#' # id <- getSamID(gds)
#'
#' # Replicate IDs should be set also to parents. Therefore, please include
#'
#'
#' # getReplicates(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("getReplicates", function(object,
parents = FALSE,
...)
standardGeneric("getReplicates"))
#' Count genotype calls and alleles per sample and per marker.
#'
#' This function calculates several summary statistics of
#' genotype calls and alleles per marker and per sample.
#' Those values will be stored in the SnpAnnotaionDataFrame slot
#' and the [sample] slot and obtained via getter
#' functions, e.g.s
#' [getCountGenoRef()], [getCountAlleleRef()], and [getMAF()].
#'
#' @param object A [GbsrGenotypeData] object.
#' @param target Either of "marker" and "sample".
#' @param node Either of "raw", "filt", and "cor". See details.
#' @param ... Unused.
#'
#' @details
#' #' Genotype call data can be obtained from the "genotype" node,
#' the "filt.genotype" node, or the "corrected.genotype" node of
#' the GDS file with `node = "raw"`, `node = "filt"`, or `node = "raw"`,
#' respectively.
#' The [setCallFilter()] function generate filtered genotype call data in the
#' "filt.genotype" node which can be accessed as mentioned above.
#' On the other hand, the "corrected.genotype" node can be generated
#' via the [estGeno()] function.
#'
#' @return A [GbsrGenotypeData] object with genotype count information.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Summarize the genotype count information and store them in the
#' # [marker] and [sample] slots of the [GbsrGenotypeData] object.
#' gds <- countGenotype(gds)
#'
#' # Get the proportion of missing genotype per sample.
#' sample_missing_rate <- getCountGenoMissing(gds,
#' target = "sample",
#' prop = TRUE)
#'
#' # Get the minor allele frequency per marker.
#' marker_minor_allele_freq <- getMAF(gds, target = "marker")
#'
#' # Draw histograms of the missing rate per sample and marker.
#' histGBSR(gds, stats = "missing")
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("countGenotype", function(object,
target = "both",
node = "raw",
...)
standardGeneric("countGenotype"))
#' Count reads per sample and per marker.
#'
#' This function calculates several summary statistics of read counts
#' per marker and per sample. Those values will be stored
#' in the SnpAnnotaionDataFrame slot and the [sample] slot
#' and obtained via getter functions, e.g.
#' [getCountReadRef()] and [getCountReadAlt()].
#' This function first calculates normalized allele read counts by dividing
#' allele read counts at each marker in each sample by the total allele read
#' of the sample followed by multiplication by 10^6. In other words, it
#' calculates reads per million (rpm). Then, the function calculates
#' mean, standard deviation, quantile values of rpm per marker and per sample.
#' The results will be stored in the SnpAnnotaionDataFrame slot and the
#' [sample] slot and obtained via getter functions, e.g.
#' [getMeanReadRef()] and [getMedianReadAlt()].
#'
#' @param object A [GbsrGenotypeData] object.
#' @param target Either of "marker" and "sample".
#' @param node Either of "raw" and "filt". See details.
#' @param ... Unused.
#'
#' @details
#' Read count data can be obtained from the "annotation/format/AD/data" node
#' or the "annotation/format/AD/filt.data" node of the GDS file
#' with `node = "raw"` or `node = "filt"`, respectively.
#' The [setCallFilter()] function generate filtered read count data
#' in the "annotation/format/AD/filt.data" node which can be accessed as
#' mentioned above.
#'
#' @return A [GbsrGenotypeData] object with read count information.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Summarize the read count information and store them in the
#' # [marker] and [sample] slots of the [GbsrGenotypeData] object.
#' gds <- countRead(gds)
#'
#' # Get the total read counts per marker
#' read_depth_per_marker <- getCountRead(gds, target = "marker")
#'
#' # Get the proportion of reference allele rads per marker.
#' reference_read_freq <- getCountReadRef(gds, target = "marker", prop = TRUE)
#'
#' # Draw histgrams of reference allele read counts per sample and marker.
#' histGBSR(gds, stats = "ad_ref")
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("countRead", function(object,
target = "both",
node = "raw",
...)
standardGeneric("countRead"))
#' Remove markers potentially having redundant information.
#'
#' Markers within the length of the sequenced reads
#' (usually ~ 150 bp, up to your sequencer)
#' potentially have redundant information and
#' those will cause unexpected errors
#' in error correction which assumes
#' independency of markers each other.
#' This function only retains the first marker or
#' the least missing rate marker
#' from the markers locating within the specified stretch.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param range A integer value to indicate the stretch to search markers.
#' @param ... Unused.
#'
#' @details
#' This function search valid markers from the first marker
#' of each chromosome and
#' compare its physical position with a neighbor marker.
#' If the distance between those
#' markers are equal or less then `range`, one of them
#' which has a larger missing rate
#' will be removed (labeled as invalid marker).
#' When the first marker was retained and
#' the second marker was removed as invalid marker,
#' next the distance between the first marker
#' and the third marker will be checked and
#' this cycle is repeated until reaching the
#' end of each chromosome. Run [validMar()]
#' to check the valid SNP markers.
#'
#' @return A [GbsrGenotypeData] object with filters on markers.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Summarize genotype count information to be used in thinMarker().
#' gds <- countGenotype(gds)
#' gds <- thinMarker(gds, range = 150)
#'
#' closeGDS(gds) # Close the connection to the GDS file
#' @export
#'
setGeneric("thinMarker", function(object, range = 150, ...)
standardGeneric("thinMarker"))
#' Filter out each genotype call meeting criteria
#'
#' Perform filtering of each genotype call, neither markers
#' nor samples. Each genotype call is supported by its read counts
#' for the reference allele and the alternative allele of
#' a marker of a sample. `setCallFilter()` set missing to
#' the genotype calls which are not reliable enough and set zero
#' to reference and alternative read counts of the genotype calls.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param dp_count A numeric vector with length two specifying lower and
#' upper limit of total read counts (reference reads + alternative reads).
#' @param ref_count A numeric vector with length two specifying lower and
#' upper limit of reference read counts.
#' @param alt_count A numeric vector with length two specifying lower and
#' upper limit of alternative read counts.
#' @param dp_qtile A numeric vector with length two specifying lower
#' and upper limit of quantile of total read counts in each sample.
#'@param ref_qtile A numeric vector with length two specifying lower
#'and upper limit of quantile of reference read counts in each sample.
#' @param alt_qtile A numeric vector with length two specifying lower
#' and upper limit of quantile of alternative read counts in each
#' sample.
#' @param ... Unused.
#'
#' @details
#' `dp_qtile`, `ref_qtile`,
#' and `alt_qtile` use quantile values of read counts
#' of each sample to decide the lower and upper limit of read counts.
#' This function generate two new nodes in the GDS file linked with
#' the given [GbsrGenotypeData] object. The filtered read counts and genotype
#' calls will be stored in the data node in the "FAD" folder and the data node
#' in the "FGT" folder, while the data node in the "CFT" stores call fitering
#' informatin.
#' To reset the filter applied by setCallFilter(), run [resetCallFilter()].
#'
#' @return A [GbsrGenotypeData] object with filters on genotype calls.
#'
#' @examples
#' # Create a GDS file from a sample VCF file.
#' vcf_fn <- system.file("extdata", "sample.vcf", package = "GBScleanR")
#' gds_fn <- tempfile("sample", fileext = ".gds")
#' gbsrVCF2GDS(vcf_fn = vcf_fn, out_fn = gds_fn, force = TRUE)
#'
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds <- loadGDS(gds_fn)
#'
#' # Filter out genotype calls supported by less than 5 reads.
#' gds <- setCallFilter(gds, dp_count = c(5, Inf))
#'
#' # Filter out genotype calls supported by reads less than
#' # the 20 percentile of read counts per marker in each sample.
#' gds <- setCallFilter(gds, dp_qtile = c(0.2, 1))
#'
#' # Reset the filter
#' gds <- resetCallFilter(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("setCallFilter", function(object,
dp_count = c(0, Inf),
ref_count = c(0, Inf),
alt_count = c(0, Inf),
dp_qtile = c(0, 1),
ref_qtile = c(0, 1),
alt_qtile = c(0, 1),
...)
standardGeneric("setCallFilter"))
#' Filter out samples
#'
#' Search samples which do not meet the criteria and label them as "invalid".
#'
#' @param object A [GbsrGenotypeData] object.
#' @param id A vector of strings matching with sample ID which can
#' be retrieve by `getSamID()`. The samples with the specified IDs
#' will be filtered out.
#' @param missing A numeric value \[0-1\] to specify the maximum
#' missing genotype call rate per sample.
#' @param het A vector of two numeric values \[0-1\] to specify
#' the minimum and maximum heterozygous genotype call rate per sample.
#' @param mac A integer value to specify the minimum minor
#' allele count per sample.
#' @param maf A numeric value to specify the minimum minor
#' allele frequency per sample.
#' @param ad_ref A numeric vector with length two specifying lower
#' and upper limit of reference read counts per sample.
#' @param ad_alt A numeric vector with length two specifying lower
#' and upper limit of alternative read counts per sample.
#' @param dp A numeric vector with length two specifying lower
#' and upper limit of total read counts per sample.
#' @param mean_ref A numeric vector with length two specifying lower
#' and upper limit of mean of reference read counts per sample.
#' @param mean_alt A numeric vector with length two specifying lower
#' and upper limit of mean of alternative read counts per sample.
#' @param sd_ref A numeric value specifying the upper limit of
#' standard deviation of reference read counts per sample.
#' @param sd_alt A numeric value specifying the upper limit of
#' standard deviation of alternative read counts per sample.
#' @param ... Unused.
#'
#' @details
#' For `mean_ref`, `mean_alt`, `sd_ref`, and `sd_alt`,
#' this function calculate mean and standard deviation of reads
#' obtained at SNP markers of each sample. If a mean read counts
#' of a sample was smaller than the specified lower limit or larger
#' than the upper limit, this function labels the sample as "invalid".
#' In the case of `sd_ref` and `sd_alt`, standard deviations of read counts
#' of each sample are checked and the samples having
#' a larger standard deviation will be labeled as "invalid".
#' To check valid and invalid samples, run [validSam()].
#'
#' @return A [GbsrGenotypeData] object with filters on samples.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Summarize the information needed for filtering.
#' gds <- countGenotype(gds)
#' gds <- countRead(gds)
#'
#' gds <- setSamFilter(gds,
#' id = getSamID(gds)[1:10],
#' missing = 0.2,
#' dp = c(5, Inf))
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("setSamFilter", function(object,
id = NA_character_,
missing = 1,
het = c(0, 1),
mac = 0,
maf = 0,
ad_ref = c(0, Inf),
ad_alt = c(0, Inf),
dp = c(0, Inf),
mean_ref = c(0, Inf),
mean_alt = c(0, Inf),
sd_ref = Inf,
sd_alt = Inf,
...)
standardGeneric("setSamFilter"))
#' Filter out markers
#'
#' Search markers which do not meet the criteria and label them as "invalid".
#'
#' @param object A [GbsrGenotypeData] object.
#' @param id A vector of integers matching with snp ID which can
#' be retrieve by `getMarID()`. The markers with the specified IDs
#' will be filtered out.
#' @param missing A numeric value \[0-1\] to specify
#' the maximum missing genotype call rate per marker
#' @param het A numeric vector with length two \[0-1\] to specify
#' the minimum and maximum heterozygous genotype call rate per marker
#' @param mac A integer value to specify the minimum minor allele
#' count per marker
#' @param maf A numeric value to specify the minimum minor allele
#' frequency per marker.
#' @param ad_ref A numeric vector with length two specifying lower
#' and upper limit of reference read counts per marker.
#' @param ad_alt A numeric vector with length two specifying lower
#' and upper limit of alternative read counts per marker.
#' @param dp A numeric vector with length two specifying lower
#' and upper limit of total read counts per marker.
#' @param mean_ref A numeric vector with length two specifying lower
#' and upper limit of mean of reference read counts per marker.
#' @param mean_alt A numeric vector with length two specifying lower
#' and upper limit of mean of alternative read counts per marker.
#' @param sd_ref A numeric value specifying the upper limit of
#' standard deviation of reference read counts per marker.
#' @param sd_alt A numeric value specifying the upper limit of
#' standard deviation of alternative read counts per marker.
#' @param ... Unused.
#'
#' @details
#' For `mean_ref`, `mean_alt`, `sd_ref`, and `sd_alt`, this function
#' calculate mean and standard deviation of reads obtained for samples
#' at each SNP marker. If a mean read counts of a marker was smaller
#' than the specified lower limit or larger than the upper limit,
#' this function labels the marker as "invalid". In the case of `sd_ref`
#' and `sd_alt`, standard deviations of read counts of each marker are
#' checked and the markers having a larger standard deviation will be
#' labeled as "invalid". To check valid and invalid
#' markers, run [validMar()].
#'
#' @return A [GbsrGenotypeData] object with filters on markers.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Summarize the information needed for filtering.
#' gds <- countGenotype(gds)
#' gds <- countRead(gds)
#'
#' gds <- setMarFilter(gds,
#' id = getMarID(gds)[1:100],
#' missing = 0.2,
#' dp = c(5, Inf))
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("setMarFilter", function(object,
id = NA_integer_,
missing = 1,
het = c(0, 1),
mac = 0,
maf = 0,
ad_ref = c(0, Inf),
ad_alt = c(0, Inf),
dp = c(0, Inf),
mean_ref = c(0, Inf),
mean_alt = c(0, Inf),
sd_ref = Inf,
sd_alt = Inf,
...)
standardGeneric("setMarFilter"))
#' Filter out markers based on marker quality metrics
#'
#' A VCF file usually has marker quality metrics in
#' the INFO filed and those are stored in
#' a GDS file created via [GBScleanR]. This function filter
#' out markers based on those marker
#' quality metrics.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param mq A numeric value to specify minimum mapping
#' quality (shown as MQ in the VCF format).
#' @param fs A numeric value to specify maximum Phred-scaled
#' p-value (strand bias) (shown as FS in the VCF format).
#' @param qd A numeric value to specify minimum Variant
#' Quality by Depth (shown as QD in the VCF format).
#' @param sor A numeric value to specify maximum
#' Symmetric Odds Ratio (strand bias) (shown as SOR in the VCF format).
#' @param mqranksum A numeric values to specify the lower
#' and upper limit of Alt vs. Ref read mapping
#' qualities (shown as MQRankSum in the VCF format).
#' @param readposranksum A numeric values to specify the lower
#' and upper limit of Alt vs. Ref read position
#' bias (shown as ReadPosRankSum in the VCF format).
#' @param baseqranksum A numeric values to specify the lower
#' and upper limit of Alt Vs. Ref base
#' qualities (shown as BaseQRankSum in the VCF format).
#' @param ... Unused.
#'
#' @details
#' Detailed explanation of each metric can be found
#' in [GATK's web site](https://gatk.broadinstitute.org/hc/en-us).
#'
#' @return A [GbsrGenotypeData] object with filters on markers.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' gds <- setInfoFilter(gds, mq = 40, qd = 20)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#' @export
#'
setGeneric("setInfoFilter", function(object,
mq = 0 ,
fs = Inf,
qd = 0,
sor = Inf,
mqranksum = c(-Inf, Inf),
readposranksum = c(-Inf, Inf),
baseqranksum = c(-Inf, Inf),
...)
standardGeneric("setInfoFilter"))
#' Set fixed allele read biases
#'
#' Set fixed allele read biases of valid markers
#'
#' @param object A [GbsrGenotypeData] object.
#' @param bias A numeric vector of fixed allele read biases to be assigned to
#' valid markers. The length of `bias` vector should match the number of valid
#' markers. The values in the `bias` vector are assigned to the valid markers
#' according to their order. NAs in the `bias` vector indicates non-fixed biases.
#' @param ... Unused.
#'
#' @return A [GbsrGenotypeData] object after adding dominant marker information
#'
#' @details
#' Since the bias set by [setFixedBias()] function is the reference allele read
#' bias. Thus, the values 0 and 1 mean that the marker only gives alternative
#' and reference allele reads, respectively.
#' Set these fixed biases if some of your markers are dominant markers.
#'
#' @examples
#' # Create a GDS file from a sample VCF file.
#' vcf_fn <- system.file("extdata", "sample.vcf", package = "GBScleanR")
#' gds_fn <- tempfile("sample", fileext = ".gds")
#' gbsrVCF2GDS(vcf_fn = vcf_fn, out_fn = gds_fn, force = TRUE)
#'
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds <- loadGDS(gds_fn)
#'
#' # Set fixed allele read biases.
#' # Initialize the bias vector to be assinged.
#' bias <- rep(NA, nmar(gds))
#'
#' # As an example, select 20 markers randomly and assign 0 or 1 to them.
#' # Since the bias set by setFixedBias() function is the reference allele read
#' # bias. Thus, the values 0 and 1 means that the marker only gives alternative
#' # and reference allele reads, respectively.
#' # Set these fixed biases if some of your markers are dominant markers.
#' bias[sample(seq_along(bias), 20)] <- sample(c(0, 1), 20, replace = TRUE)
#'
#' gds <- setFixedBias(gds, bias = bias)
#'
#' # Close the connection to the GDS file
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("setFixedBias", function(object, bias, ...)
standardGeneric("setFixedBias"))
#' Get fixed allele read biases
#'
#' Get fixed allele read biases of markers
#'
#' @param object A [GbsrGenotypeData] object.
#' @param valid A logical value. See details.
#' @param chr A integer or string to specify chromosome to get information.
#' @param ... Unused.
#'
#' @return A numeric vector of fixed allele read biases.
#'
#' @details
#' If `valid = TRUE`, A logical vector for the markers which are labeled `TRUE` in
#' the "valid" column of the "marker" slot will be returned. If you need check
#' the dominant markers in all markers, set `valid = FALSE`. [validMar()] tells you
#' which markers are valid.
#'
#' @return A [GbsrGenotypeData] object after adding dominant marker information
#'
#' @seealso [setFixedBias()]
#'
#' @examples
#' # Create a GDS file from a sample VCF file.
#' vcf_fn <- system.file("extdata", "sample.vcf", package = "GBScleanR")
#' gds_fn <- tempfile("sample", fileext = ".gds")
#' gbsrVCF2GDS(vcf_fn = vcf_fn, out_fn = gds_fn, force = TRUE)
#'
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds <- loadGDS(gds_fn)
#'
#' # Set fixed allele read biases.
#' # Initialize the bias vector to be assinged.
#' bias <- rep(NA, nmar(gds))
#'
#' # As an example, select 20 markers randomly and assign 0 or 1 to them.
#' # Since the bias set by setFixedBias() function is the reference allele read
#' # bias. Thus, the values 0 and 1 means that the marker only gives alternative
#' # and reference allele reads, respectively.
#' # Set these fixed biases if some of your markers are dominant markers.
#' bias[sample(seq_along(bias), 20)] <- sample(c(0, 1), 20, replace = TRUE)
#'
#' gds <- setFixedBias(gds, bias = bias)
#'
#' fixed_bias <- getFixedBias(gds)
#'
#' # Close the connection to the GDS file
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("getFixedBias", function(object, valid = TRUE, chr = NULL, ...)
standardGeneric("getFixedBias"))
#' Reset the filter made by [setSamFilter()]
#'
#' Remove "invalid" labels put on samples and make all samples valid.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param ... Unused.
#'
#' @return A [GbsrGenotypeData] object after removing
#' all filters on samples.
#'
#' @examples
#' # Create a GDS file from a sample VCF file.
#' vcf_fn <- system.file("extdata", "sample.vcf", package = "GBScleanR")
#' gds_fn <- tempfile("sample", fileext = ".gds")
#' gbsrVCF2GDS(vcf_fn = vcf_fn, out_fn = gds_fn, force = TRUE)
#'
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds <- loadGDS(gds_fn)
#'
#' # Summarize the information needed for filtering.
#' gds <- countGenotype(gds)
#' gds <- countRead(gds)
#'
#' gds <- setSamFilter(gds,
#' id = getSamID(gds)[1:10],
#' missing = 0.2,
#' dp = c(5, Inf))
#'
#' # Reset all filters applied above.
#' gds <- resetSamFilter(gds)
#'
#' # Close the connection to the GDS file
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("resetSamFilter", function(object, ...)
standardGeneric("resetSamFilter"))
#' Reset the filter made by [setMarFilter()]
#'
#' Remove "invalid" labels put on markers and make all markers valid.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param ... Unused.
#'
#' @return A [GbsrGenotypeData] object after removing all filters on markers.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Check the number of markers.
#' nmar(gds)
#'
#' # Summarize the information needed for filtering.
#' gds <- countGenotype(gds)
#' gds <- countRead(gds)
#'
#' # filter out some markers meeting the criteria.
#' gds <- setMarFilter(gds,
#' id = getMarID(gds)[1:100],
#' missing = 0.2,
#' dp = c(5, Inf))
#'
#' # Check the number of the retained markers.
#' nmar(gds)
#'
#' # Reset all filters applied above.
#' gds <- resetMarFilter(gds)
#'
#' # Check the number of the markers again.
#' nmar(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#' @export
#'
setGeneric("resetMarFilter", function(object, ...)
standardGeneric("resetMarFilter"))
#' Reset all filters made by [setSamFilter()], [setMarFilter()],
#' and [setCallFilter()].
#'
#' Return all data intact.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param ... Unused.
#'
#' @return A [GbsrGenotypeData] object after removing all filters.
#'
#'
#' @return A [GbsrGenotypeData] object after removing all filters on markers.
#'
#' @examples
#' # Create a GDS file from a sample VCF file.
#' vcf_fn <- system.file("extdata", "sample.vcf", package = "GBScleanR")
#' gds_fn <- tempfile("sample", fileext = ".gds")
#' gbsrVCF2GDS(vcf_fn = vcf_fn, out_fn = gds_fn, force = TRUE)
#'
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds <- loadGDS(gds_fn)
#'
#' # `setCallFilter()` do not require summarized information of
#' # genotype counts and read counts.
#' gds <- setCallFilter(gds, dp_count = c(5, Inf))
#'
#' # `setSamFilter()` and `setMarFilter()` needs information of
#' # the genotype count summary and the read count summary.
#' gds <- countGenotype(gds)
#' gds <- countRead(gds)
#'
#' gds <- setSamFilter(gds,
#' id = getSamID(gds)[1:10],
#' missing = 0.2,
#' dp = c(5, Inf))
#'
#' gds <- setMarFilter(gds,
#' id = getMarID(gds)[1:100],
#' missing = 0.2,
#' dp = c(5, Inf))
#'
#' gds <- setInfoFilter(gds, mq = 40, qd = 20)
#'
#' # Reset all filters applied above.
#' gds <- resetFilter(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#' @export
#'
setGeneric("resetFilter", function(object, ...)
standardGeneric("resetFilter"))
#' Set the origina; data to be used in GBScleanR's functions
#'
#' Set the "genotype" node and the "data" node
#' as primary nodes for genotype
#' data and read count data. The data stored
#' in the primary nodes are used in the
#' functions of GBScleanR.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param ... Unused.
#'
#' @details
#' A [GbsrGenotypeData] object storing information of
#' the primary node of genotype data and
#' read count data. All of the functions implemented
#' in [GBScleanR] check the primary nodes
#' and use data stored in those nodes.
#' [setCallFilter()] create new nodes storing
#' filtered genotype calls and read counts in
#' a GDS file and change the primary nodes to
#' "filt.genotype" and "filt.data" for genotype and
#' read count data, respectively.
#' [resetCallFilter()] set back the nodes to
#' the original, those are "genotype" and "data" for
#' genotype and read count data, respectively.
#'
#' @return A [GbsrGenotypeData] object.
#'
#' @examples
#' # Create a GDS file from a sample VCF file.
#' vcf_fn <- system.file("extdata", "sample.vcf", package = "GBScleanR")
#' gds_fn <- tempfile("sample", fileext = ".gds")
#' gbsrVCF2GDS(vcf_fn = vcf_fn, out_fn = gds_fn, force = TRUE)
#'
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds <- loadGDS(gds_fn)
#'
#' # Filter out set zero to read counts and
#' # missing to genotype calls of which meet the criteria.
#' gds <- setCallFilter(gds, dp_count = c(5, Inf))
#'
#' # Now any functions of [GBScleanR] reference the genotype data
#' # stored in the "filt.genotype" node of the GDS file.
#'
#' # If you need to set the "genotype" node, where store the raw genotype data
#' # as genotype to be referenced by the functions of GBScleanR,
#' # run the following.
#' gds <- resetCallFilter(gds)
#'
#' # Reopening the connection to the GDS file also set the raw genotype again.
#' gds <- loadGDS(gds)
#'
#' # Close the connection to the GDS file
#' closeGDS(gds)
#' @export
#'
setGeneric("resetCallFilter", function(object, ...)
standardGeneric("resetCallFilter"))
#' Write a VCF file based on data in a GDS file
#'
#' Write out a VCF file with raw, filtered, or corrected genotype data
#' stored in a GDS file. The output VCF file contains the GT, AD, and DP fields.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param out_fn A string to specify the path to an output VCF file.
#' @param node Either one of "raw" or "cor" to output raw genotype data or
#' corrected genotype data, respectively.
#' @param info.export characters, the variable name(s) in the INFO node for
#' export; or NULL for all variables. If you specify `character(0)`, nothing
#' will be exported from the INFO node.
#' @param fmt.export characters, the variable name(s) in the FORMAT node for
#' import; or NULL for all variables. If you specify `character(0)`, nothing
#' will be exported from the FORMAT node, except for GT.
#' @param parents A logical value to specify whether parental
#' samples should be included in an output VCF file or not.
#' @param ... Unused.
#' @export
#'
#' @return The path to the VCF file.
#'
#' @details Create a VCF file at location specified by out_fn.
#' The connection to the GDS file of the input [GbsrGenotypeData] object will be
#' automatically closed for internal file handling in this function. Please use
#' [reopenGDS()] to open the connection again. If you use [loadGDS()], summary
#' statistics and filtering information will be discarded.
#'
#' @importFrom SeqArray seqSNP2GDS seqGDS2VCF seqOpen
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Create a VCF file with data from the GDS file
#' # connected to the [GbsrGenotypeData] oobject.
#' out_fn <- tempfile("sample_out", fileext = ".vcf.gz")
#' # gbsrGDS2VCF(gds, out_fn)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
setGeneric("gbsrGDS2VCF", function(object,
out_fn,
node = "raw",
info.export = NULL,
fmt.export = NULL,
parents = TRUE, ...)
standardGeneric("gbsrGDS2VCF"))
#' Write a CSV file based on data in a GDS file
#'
#' Write out a CSV file with raw, filtered, corrected genotype data or
#' estimated haplotype data
#' stored in a GDS file.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param out_fn A string to specify the path to an output VCF file.
#' @param node Either one of "raw", "filt", "cor", "hap", "dosage to output raw
#' genotype data, filtered genotype data, corrected genotype data, estimated
#' haplotype data, and estimated allele dosage data, respectively.
#' @param incl_parents A logical value to specify whether parental
#' samples should be included in an output VCF file or not.
#' @param bp2cm A numeric value to convert positions in basepairs (bp) to
#' centiMorgan (cm). The specified here is used to multiply position values. The
#' default is NULL and then internally sets `bp2cm = 4e-06` when
#' `format = "qtl`. If not `format = "qtl`, 1 is set to `bp2cm` as default.
#' @param format A string to indicate the output format. See details.
#' @param read A logical value to indicate whether read counts should be output
#' with genotype data or not. See details.
#' @param ... Unused.
#' @export
#'
#' @return The path to the CSV file.
#'
#' @details Create a CSV file at location specified by out_fn. The setting
#' `format = "qtl"` makes the function export the data in the r/qtl format
#' that can be loaded using read.cross as `format = "csvs"` with a phenotype
#' data. If you have executed [estGeno()] and your population is a biparental
#' population, set 'node = "dosage"' to export a r/qtl format CSV in which
#' homozygoutes of the alleles of Parent 1 and 2, which have been specified by
#' [setParents()], are represented by A and B, respectively. If 'node = "raw"',
#' 'node = "fill"', and 'node = "cor"', A and B in the r/qtl format CSV indicate
#' homozygoutes of reference and alternative alleles shown in a given VCF file.
#' This means that if Parent 1 has the alternative allele homozygoute at
#' Marker 1 and Offspring 1 has the same genotype with Parent 1, the genotype of
#' Offspring 1 at Marker 1 will be B in the r/qtl format CSV. On the other hand,
#' if you set 'node = "dosage"', the genotype of Offspring 1 at Marker 1 will be
#' A in the r/qtl format CSV.
#' The output CSV file has the rows indicating chromosome ID and positions
#' of markers followed by the rows indicating genotype or haplotype data of
#' samples.
#' If `read = TRUE`, the output of each genotype call would be in
#' the form of `GT:ADR,ADA` where GT, ADR, and ADA represent genotype,
#' referenece read count, and alternative read count, respectively.
#' If `format = "qtl"`, `read = TRUE` will be ignored.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Create a CSV file with data from the GDS file
#' # connected to the [GbsrGenotypeData] oobject.
#' out_fn <- tempfile("sample_out", fileext = ".csv")
#' gbsrGDS2CSV(gds, out_fn)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
setGeneric("gbsrGDS2CSV", function(object,
out_fn,
node = "raw",
incl_parents = TRUE,
bp2cm = NULL,
format = "",
read = FALSE,
...)
standardGeneric("gbsrGDS2CSV"))
#' Genotype estimation using a hiden Morkov model
#'
#' Clean up genotype data by error correction based on
#' genotype estimation using a hidden Markov model.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param node Either "raw" or "filt" to indicate whether raw or filtered read
#' counts are used for genotype estimation. See [setCallFilter()] for the
#' details of filtered read counts.
#' @param recomb_rate A numeric value to indicate the expected
#' recombination frequency per chromosome per megabase pairs.
#' @param error_rate A numeric value of the expected sequence error rate.
#' @param call_threshold A numeric value of the probability threshold
#' to accept estimated genotype calls.
#' @param het_parent A logical value to indicate whether parental
#' samples are outbred or inbred. If FALSE, this function assume all
#' true genotype of markers in parents are homozygotes.
#' @param optim A logical value to specify whether to
#' conduct parameter optimization for
#' error correction.
#' @param iter An integer value to specify the number of
#' iterative parameter updates.
#' @param n_threads An integer value to specify the number of
#' threads used for the calculation. The default is 1 and if `n_threads = NULL`,
#' automatically set half the number of available threads on the computer.
#' @param dummy_reads An integer to specify the number of dummy reads to assign
#' to dummy parental samples for genotype estimation. See details.
#' @param ... Unused.
#'
#' @return A [GbsrGenotypeData] object in which the "estimated.haplotype",
#' "corrected.genotype" and
#' "parents.genotype" nodes were added.
#'
#' @importFrom RcppParallel setThreadOptions defaultNumThreads
#' @importFrom expm expm
#' @importFrom stats cor
#'
#' @details If you have not set parental samples by [setParents()] and
#' initialized the scheme object using [initScheme()], you have the scheme
#' object without explicit parental information that is assumed to be a
#' bi-parental population. In this case, [estGeno()] will run in the parentless
#' mode. In the parentless mode, the algorithm assumes that the given population
#' is a bi-parental population. The number of reference allele reads and
#' the number of alternative allele reads of the dummy parents are set based on
#' `dummy_reads`, respectively. Dummy parent 1 has `dummy_reads` of the
#' reference allele reads and 0 alternative allele reads at all markers, while
#' dummy parent 2 has 0 and `dummy_reads` of reference and alternative allele
#' reads at all markers. If the parents of your population were outbred lines or
#' you cannot assume one of the parents has completely reference homozygotes and
#' another has laternative homozygotes at all markers, Set `dummy_reads = 0` to
#' leave uncertainty to estimate parental genotypes based on the offspring
#' genotypes. Nevertheless, the parentless mode is less accurate and has more
#' chance to get a genotype estimate randomly selected from the equally likely
#' genotype estimates.
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Find the IDs of parental samples.
#' parents <- grep("Founder", getSamID(gds), value = TRUE)
#'
#' # Set the parents and flip allele information
#' # if the reference sample (Founder1 in our case) has homozygous
#' # alternative genotype at some markers of which alleles will
#' # be swapped to make the reference sample have homozygous
#' # reference genotype.
#' gds <- setParents(gds, parents = parents)
#'
#' # Initialize a scheme object stored in the slot of the GbsrGenotypeData.
#' # We chose `crosstype = "pair"` because two inbred founders were mated
#' # in our breeding scheme.
#' # We also need to specify the mating matrix which has two rows and
#' # one column with integers 1 and 2 indicating a sample (founder)
#' # with the memberID 1 and a sample (founder) with the memberID 2
#' # were mated.
#' gds <- initScheme(gds, mating = cbind(c(1:2)))
#'
#' # Add information of the next cross conducted in our scheme.
#' # We chose 'crosstype = "selfing"', which do not require a
#' # mating matrix.
#' gds <- addScheme(gds, crosstype = "selfing")
#'
#' # Execute error correction by estimating genotype and haplotype of
#' # founders and offspring.
#' gds <- estGeno(gds)
#'
#' # Close the connection to the GDS file.
#' closeGDS(gds)
#'
#' @export
#'
setGeneric("estGeno", function(object,
node = "raw",
recomb_rate = 0.04,
error_rate = 0.0025,
call_threshold = 0.9,
het_parent = FALSE,
optim = TRUE,
iter = 2,
n_threads = 1,
dummy_reads = 5,
...)
standardGeneric("estGeno"))
#' Build a [GbsrScheme] object
#'
#' [GBScleanR] uses breeding scheme information to set the expected
#' number of cross overs in a chromosome which is a required parameter
#' for the genotype error correction with the hidden Markov model
#' implemented in the [estGeno()] function.
#' This function build the object storing
#' type crosses performed at each generation of breeding and population sizes.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param mating An integer matrix to indicate mating combinations.
#' The each element should match with IDs of
#' parental samples which are 1 to N. see Details.
#' @param ... Unused.
#'
#' @return A [GbsrGenotypeData] object storing
#' a [GbsrScheme] object in the "scheme" slot.
#'
#' @details
#' A [GbsrScheme] object stores information of a population size,
#' mating combinations and
#' a type of cross applied to each generation of the breeding process
#' to generate the population which you are going to subject
#' to the [estGeno()] function.
#' The first generation should be parents of the population.
#' It is supposed that
#' [setParents()] has been already executed and parents
#' are labeled in the
#' [GbsrGenotypeData] object. The number of parents
#' are automatically recognized.
#' The "crosstype" of the first generation can be
#' "pairing" or "random" with
#' `pop_size = N`, where N is the number of parents.
#' You need to specify a matrix indicating combinations
#' of `mating`, in which each column shows
#' a pair of parental samples. For example, if you have
#' only two parents, the `mating` matrix
#' is `mating = cbind(c(1:2))`. The indices used in the matrix
#' should match with the IDs labeled to parental samples by [setParents()].
#' The created [GbsrScheme] object is set
#' in the `scheme` slot of the [GbsrGenotypeData] object.
#'
#' @export
#'
#' @seealso [addScheme()] and [showScheme()]
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Biparental F2 population.
#' gds <- setParents(gds, parents = c("Founder1", "Founder2"))
#'
#' # setParents gave member ID 1 and 2 to Founder1 and Founder2, respectively.
#' gds <- initScheme(gds, mating = cbind(c(1:2)))
#'
#' # Now the progenies of the cross above have member ID 3.
#' # If `crosstype = "selfing"` or `"sibling"`, you can omit a `mating` matrix.
#' gds <- addScheme(gds, crosstype = "self")
#'
#' # Now you can execute `estGeno()` which requires a [GbsrScheme] object.
#'
#' # Close the connection to the GDS file
#' closeGDS(gds)
#'
setGeneric("initScheme", function(object, mating, ...)
standardGeneric("initScheme"))
#' #' Build a [GbsrScheme] object
#'
#' [GBScleanR] uses breeding scheme information to set the expected
#' number of cross overs in a chromosome which is a required parameter
#' for the genotype error correction with the Hidden Markov model
#' implemented in the `estGeno()` function.
#' This function build the object storing
#' type crosses performed at each generation of breeding and population sizes.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param crosstype A string to indicate the type of
#' cross conducted with a given generation.
#' @param mating An integer matrix to indicate mating combinations.
#' The each element should match with member IDs of the last generation.
#' @param ... Unused.
#'
#' @return A [GbsrGenotypeData] object storing
#' a [GbsrScheme] object in the "scheme" slot.
#'
#' @details
#' A scheme object is just a data.frame indicating a population size and
#' a type of cross applied to each generation of the breeding process
#' to generate the population which you are going to subject
#' to the [estGeno()] function.
#' The `crosstype` can take either of "selfing", "sibling",
#' "pairing", and "random".
#' When you set `crosstype = "random"`, you need to
#' specify `pop_size` to indicate how many
#' individuals were crossed in the random mating.
#' You also need to specify a matrix indicating
#' combinations of `mating`, in which
#' each column shows a pair of member IDs indicating
#' parental samples of the cross.
#' Member IDs are serial numbers starts from 1 and
#' automatically assigned by
#' [initScheme()] and [addScheme()]. To check the member IDs,
#' run [showScheme()].
#' Please see the examples section for more details of
#' specifying a `mating` matrix.
#' The created [GbsrScheme] object is set in the `scheme`
#' slot of the [GbsrGenotypeData] object.
#'
#' @export
#'
#' @seealso [addScheme()] and [showScheme()]
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Biparental F2 population.
#' gds <- setParents(gds, parents = c("Founder1", "Founder2"))
#'
#' # setParents gave member ID 1 and 2 to Founder1 and Founder2, respectively.
#' gds <- initScheme(gds, mating = cbind(c(1:2)))
#'
#' # Now the progenies of the cross above have member ID 3.
#' # If `crosstype = "selfing"` or `"sibling"`, you can omit a `mating` matrix.
#' gds <- addScheme(gds, crosstype = "self")
#'
#' ############################################################################
#' # Now you can execute `estGeno()` which requires a [GbsrScheme] object.
#'
#' # Close the connection to the GDS file
#' closeGDS(gds)
setGeneric("addScheme", function(object, crosstype, mating, ...)
standardGeneric("addScheme"))
#' Automate a [GbsrScheme] object building.
#'
#' [GBScleanR] uses breeding scheme information to set the expected
#' number of cross overs in a chromosome which is a required parameter
#' for the genotype error correction with the Hidden Markov model
#' implemented in the `estGeno()` function.
#' This function automates the building of a [GbsrScheme] object.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param crosstype A string to indicate the type of
#' cross conducted with a given generation.
#' @param generation An integer to indicate which generation of selfing or
#' sibling-crossing your population is.
#' @param ... Unused.
#'
#' @return A [GbsrGenotypeData] object storing
#' a [GbsrScheme] object in the "scheme" slot.
#'
#' @details
#' A scheme object is just a data.frame indicating a population size and
#' a type of cross applied to each generation of the breeding process
#' to generate the population which you are going to subject
#' to the [estGeno()] function.
#' The `crosstype` specified to [makeScheme()] can take "selfing" and "sibling".
#' When your population has $2^n$ parents specified by [setParents()],
#' [makeScheme()] assumes those parents were crossed in the "funnel" design in
#' which $2^n$ parents are crossed to obtain $2^n/2$ F1 hybrids followed by
#' successive intercrossings (pairings) of the hybrids to combine the genomes
#' of all parents in one family of siblings. The [makeScheme()] function assumes
#' that the parents that were assigned an odd number member ID (N) in
#' [setParents()] had been crossed with the parent that were assigned an even
#' number (N+1). For example, if you set parents as shown below. The
#' [makeScheme()] function prepare a scheme information that indicates the
#' intercrossings of "p1 x p2", "p3 x p4", "p5 x p6", and "p7 x p8" followed by
#' crossing of "p1xp2_F1 x p3xp4_F1" and "p5xp6_F1 x p7xp8_F1" and then crossing
#' of the two 4-way crossed liens to produce 8-way crossed hybrid lines. If,
#' for example, `generation = 5` indicating an F5 generation was specified to
#' [makeScheme()], the function adds 4 successive selfing or sibling crossings
#' in the scheme. The created [GbsrScheme] object will be set in the `scheme`
#' slot of the [GbsrGenotypeData] object.
#'
#' @export
#'
#' @seealso [initScheme()], [addScheme()], and [showScheme()]
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Biparental F2 population.
#' gds <- setParents(gds, parents = c("Founder1", "Founder2"))
#'
#' gds <- makeScheme(gds, generation = 2, crosstype = "self")
#'
#' ############################################################################
#' # Now you can execute `estGeno()` which requires a [GbsrScheme] object.
#'
#' # Close the connection to the GDS file
#' closeGDS(gds)
setGeneric("makeScheme", function(object, generation, crosstype, ...)
standardGeneric("makeScheme"))
#' Assign member IDs to samples
#'
#' [GBScleanR] uses breeding scheme information to set the expected
#' number of cross overs in a chromosome which is a required parameter
#' for the genotype error correction with the Hidden Markov model
#' implemented in the `estGeno()` function.
#' This function assign member IDs to indicate which samples were derived from
#' which pedigree that recorded in the [GbsrScheme] object.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param id A numeric vector indicating member IDs to assign to samples.
#' @param ... Unused.
#'
#' @return A [GbsrGenotypeData] object storing
#' a [GbsrScheme] object in the "scheme" slot.
#'
#' @details
#' Member IDs can be shown by [showScheme()]. Only the member IDs assigned to
#' progenies (not parents) are available to assign to samples. If the last
#' generation recorded in the [GbsrScheme] object has only one member ID that
#' should be assigned to all samples in your population, you can omit assigning
#' IDs by [assignScheme()]. In that case, [estGeno()] automatically assign the
#' only one member ID to all samples.
#'
#' @export
#'
#' @seealso [addScheme()] and [showScheme()]
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Biparental F2 population.
#' gds <- setParents(gds, parents = c("Founder1", "Founder2"))
#'
#' # setParents gave member ID 1 and 2 to Founder1 and Founder2, respectively.
#' gds <- initScheme(gds, mating = cbind(c(1:2)))
#'
#' # Now the progeny of the cross above have member ID 3.
#' # If `crosstype = "selfing"` or `"sibling"`, you can omit a `mating` matrix.
#' gds <- addScheme(gds, crosstype = "self")
#'
#' # The progeny of the selfing above has member ID 4.
#' # To execute genotype estimation for your samples, you need to assign a member
#' # ID to each of the samples.
#'
#' # Check IDs of samples to be assigned member IDs if necessary.
#' getSamID(gds)
#'
#' # The assignScheme() assign member IDs `id` to the samples in order.
#' # Please confirm the order of the member IDs in `id` and the order of the
#' # sample IDs shown by getSamID(gds).
#' gds <- assignScheme(gds, rep(4, nsam(gds)))
#'
#' # If your population has samples all of which belong to only one pedigree,
#' # you can omit assignScheme() and let estGeno() automatically assign the
#' # last member ID to all samples.
#'
#' ############################################################################
#' # Now you can execute `estGeno()` which requires a [GbsrScheme] object.
#'
#' # Close the connection to the GDS file
#' closeGDS(gds)
setGeneric("assignScheme", function(object, id, ...)
standardGeneric("assignScheme"))
#' Show the information stored in a [GbsrScheme] object
#'
#' Print the information of each generation in
#' a [GbsrScheme] object in the scheme
#' slot of a [GbsrGenotypeData] object.
#' A [GbsrScheme] object stores information of a population size,
#' mating combinations and
#' a type of cross applied to each generation of the breeding process
#' to generate the population which you are going to
#' subject to the `estGeno()` function.
#'
#' @param object A [GbsrGenotypeData] object.
#' @param ... Unused.
#'
#' @return NULL. Print the scheme information on the R console.
#'
#' @export
#'
#' @seealso [initScheme()] and [addScheme()]
#'
#' @examples
#' # Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
#' gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
#' gds <- loadGDS(gds_fn)
#'
#' # Biparental F2 population.
#' gds <- setParents(gds, parents = c("Founder1", "Founder2"))
#'
#' # setParents gave member ID 1 and 2 to Founder1 and Founder2, respectively.
#' gds <- initScheme(gds, mating = cbind(c(1:2)))
#'
#' # Now the progenies of the cross above have member ID 3.
#' # If `crosstype = "selfing"` or `"sibling"`, you can omit a `mating` matrix.
#' gds <- addScheme(gds, crosstype = "self")
#'
#' # Now you can execute `estGeno()` which requires a [GbsrScheme] object.
#'
#' # Close the connection to the GDS file
#' closeGDS(gds)
#'
setGeneric("showScheme", function(object, ...)
standardGeneric("showScheme"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.