counts_scal_PCA <- counts_tt %>% scale_abundance() %>% reduce_dimensions(method = "PCA", .dims = 3)
de_all %>% # Subset transcript information pivot_transcript() %>% # Reshape for nesting pivot_longer( cols = -c(feature, symbol, .abundant, group:exon_name), names_sep = "_", names_to = c("method", "statistic"), values_to = "value" ) %>% # Filter statistic filter(statistic %in% c("FDR", "adj.P.Val", "padj")) %>% filter(value < 0.05) %>% # Counting count(method) %>% # Sort arrange(desc(n))
What is the most abundant cell type overall in BRCA samples?
BRCA_cell_type_long %>% group_by(cell_type) %>% summarise(m = median(proportion)) %>% dplyr::arrange(dplyr::desc(m))
mito_info_all_datasets <- pbmc_nested %>% mutate(mitochondrion_info = map( data, ~ # Calculate mitochondrial statistics perCellQCMetrics(.x, subsets = list(Mito = which(location == "MT"))) %>% # Convert to tibble as_tibble(rownames = "cell") %>% # Label cells with high mitochondrial content mutate(high_mitochondrion = isOutlier(subsets_Mito_percent, type = "higher")) )) mito_info_all_datasets
UMAP 1 of 2 components has More variability than 3 components
left_join( pbmc %>% runUMAP(ncomponents = 2, dimred="corrected") %>% as_tibble() %>% select(cell, UMAP1), pbmc %>% runUMAP(ncomponents = 3, dimred="corrected") %>% as_tibble() %>% select(cell, UMAP1), by="cell" ) %>% summarise(sd(UMAP1.x), sd(UMAP1.y))
Skeletal muscle
pbmc %>% count(label, first.labels) %>% arrange(desc(n))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.