knitr::opts_chunk$set( collapse = TRUE, comment = "#>", warning = FALSE, message = TRUE, out.width = "100%" )
library(massdataset) library(ggplot2) library(tidyverse) library(massqc) data("expression_data") data("sample_info") data("variable_info") object = create_mass_dataset( expression_data = expression_data, sample_info = sample_info, variable_info = variable_info ) object %>% massqc_sample_boxplot() object %>% log(10) %>% massqc_sample_boxplot() object %>% log(10) %>% massqc_sample_boxplot(color_by = "class") object %>% log(10) %>% massqc_sample_boxplot(fill_by = "class") + ggsci::scale_fill_lancet() object %>% log(10) %>% massqc_sample_boxplot( fill_by = "class", color_by = "class", point = TRUE, point_alpha = 0.3 ) + ggsci::scale_fill_lancet() object %>% log(10) %>% massqc_sample_boxplot(color_by = "class", point = TRUE, point_alpha = 0.3) + ggsci::scale_color_lancet()
object = create_mass_dataset( expression_data = expression_data, sample_info = sample_info, variable_info = variable_info ) object %>% massqc_pca() object %>% massqc_pca(color_by = "class") object %>% scale %>% massqc_pca(color_by = "class") object %>% scale %>% massqc_pca(color_by = "class", frame = FALSE) + ggsci::scale_fill_lancet() object %>% scale %>% massqc_pca(color_by = "class", frame = FALSE) + ggsci::scale_fill_lancet() + ggrepel::geom_text_repel(aes(label = sample_id)) object %>% scale %>% massqc_pca(color_by = "class", frame = FALSE) + ggsci::scale_fill_lancet() + ggrepel::geom_text_repel(aes(label = ifelse(class == "QC", sample_id, NA))) object %>% massqc_pca_pc1() object %>% massqc_pca_pc1(color_by = "class") object %>% scale %>% massqc_pca_pc1(color_by = "class") object %>% scale %>% massqc_pca_pc1( color_by = "class", order_by = "injection.order", point_alpha = 1, point_size = 5 ) + ggsci::scale_color_lancet() object %>% scale %>% massqc_pca_pc1( color_by = "class", order_by = "injection.order", point_alpha = 1, point_size = 5, desc = TRUE ) + ggsci::scale_color_lancet()
object = create_mass_dataset( expression_data = expression_data, sample_info = sample_info, variable_info = variable_info ) ##show missing values plot show_missing_values(object) show_missing_values(object[1:10,], cell_color = "white") ###only show features with mz < 100 object %>% activate_mass_dataset(what = "variable_info") %>% dplyr::filter(mz < 100) %>% show_missing_values(cell_color = "white", show_row_names = TRUE, row_names_side = "left") show_sample_missing_values(object, color_by = "class", order_by = "na") show_variable_missing_values(object, color_by = "rt") + scale_color_gradient(low = "skyblue", high = "red")
library(massdataset) library(ggplot2) library(tidyverse) data("expression_data") data("sample_info") data("variable_info") object = create_mass_dataset( expression_data = expression_data, sample_info = sample_info, variable_info = variable_info ) object %>% massqc_rsd_plot() object %>% massqc_rsd_plot(color_by = "rsd") object %>% massqc_rsd_plot(color_by = "rsd", order_by = "rsd") object %>% massqc_rsd_plot(color_by = "rsd", point_alpha = 1) + scale_color_gradient(low = "skyblue", high = "red") + geom_hline(yintercept = 0.3, color = "red") object %>% activate_mass_dataset(what = "sample_info") %>% filter(class == "Subject") %>% massqc_rsd_plot(color_by = "rsd", point_alpha = 1) + scale_color_gradient(low = "skyblue", high = "red") + geom_hline(yintercept = 0.3, color = "red")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.