library(dplyr)
library(purrr)
library(tidyr)
library(readr)
library(stringr)
library(tibble)
library(limma)
source("inst/scripts/utils.R")
tfs = load_tf_census()
#### Load networks from all types of evidences ####
n = list.files("inst/extdata/networks", pattern = "network",
recursive = TRUE, full.names = TRUE) %>%
# remove networks inferred from TCGA data
discard(.p = ~str_detect(.x, "tcga")) %>%
map_dfr(function(path) {
message(path)
net = readRDS(path)
# extract evidence type
evidence = path %>%
str_split("/") %>%
pluck(1,4)
# extract database
database = path %>%
str_split("/") %>%
pluck(1,5)
# set mode of regulation to 0 for interactions without any mor information
if (!("mor" %in% colnames(net))) {
net = net %>% mutate(mor = 0)
}
net = net %>%
transmute(tf, target, mor,
evidence = evidence,
database = database)
return(net)
}) %>%
distinct()
# # update deprecated gene symbols of tfs and targets
# target_aliases = n %>%
# distinct(target) %>%
# mutate(alias = alias2SymbolTable(target)) %>%
# mutate(alias = coalesce(alias, target))
#
# tf_aliases = n %>%
# distinct(tf) %>%
# mutate(alias = alias2SymbolTable(tf)) %>%
# mutate(alias = coalesce(alias, tf))
#
# n = n %>%
# inner_join(target_aliases, by="target") %>%
# rename(old_target = target) %>%
# select(tf, target = alias, mor, evidence, database, old_target) %>%
# inner_join(tf_aliases, by="tf") %>%
# rename(old_tf = tf) %>%
# select(tf = alias, target, mor, evidence, database, old_tf, old_target) %>%
# select(-old_tf, -old_target)
#### Confidence class A ####
# interactions in >= 2 curated databases
a1 = n %>%
filter(evidence == "curated") %>%
count(tf, target) %>%
filter(n >= 2) %>%
select(tf, target)
# interactions in > 0 reviews/TF_e
a2 = n %>%
filter(database %in% c("reviews", "tf_e")) %>%
select(tf, target)
# signed interactions in curated and any other evidence (non curated)
signed = n %>%
filter(evidence == "curated" & mor != 0) %>%
distinct(tf, target)
noncurated = n %>%
filter(evidence != "curated") %>%
distinct(tf, target)
a3 = noncurated %>%
inner_join(signed, by=c("tf", "target")) %>%
distinct(tf, target)
# interactions in all 4 evidences
a4 = n %>%
distinct(tf, target, evidence) %>%
count(tf, target) %>%
filter(n == 4) %>%
select(-n)
a = bind_rows(a1, a2, a3, a4) %>%
distinct() %>%
mutate(confidence = "A")
##### Confidence class B ####
# interactions in curated databases and ChIP-seq
b1 = n %>%
distinct(tf, target, evidence) %>%
filter(evidence %in% c("curated", "chip_seq")) %>%
count(tf, target) %>%
filter(n==2) %>%
select(-n)
# interaction in curated databases, predictions and TFBS
b2 = n %>%
distinct(tf, target, evidence) %>%
filter(evidence %in% c("curated", "tfbs", "inferred")) %>%
count(tf, target) %>%
filter(n==3) %>%
select(-n)
# interaction in ChIP-seq, predictions and TFBS
b3 = n %>%
distinct(tf, target, evidence) %>%
filter(evidence %in% c("chip_seq", "tfbs", "inferred")) %>%
count(tf, target) %>%
filter(n==3) %>%
select(-n)
b = bind_rows(b1, b2, b3) %>%
distinct() %>%
mutate(confidence = "B")
#### Confidence class C ####
# interaction in curated and TFBS
c1 = n %>%
distinct(tf, target, evidence) %>%
filter(evidence %in% c("curated", "tfbs")) %>%
count(tf, target) %>%
filter(n==2) %>%
select(-n)
# interactions in ChIP_Seq and TFBS
c2 = n %>%
distinct(tf, target, evidence) %>%
filter(evidence %in% c("chip_seq", "tfbs")) %>%
count(tf, target) %>%
filter(n==2) %>%
select(-n)
# interactions in ChIP_seq & inferred
c3 = n %>%
distinct(tf, target, evidence) %>%
filter(evidence %in% c("chip_seq", "inferred")) %>%
count(tf, target) %>%
filter(n==2) %>%
select(-n)
c = bind_rows(c1, c2, c3) %>%
distinct() %>%
mutate(confidence = "C")
#### Confidence class D ####
# interactions occurring only in curated
d1 = n %>%
distinct(tf, target, evidence) %>%
filter(evidence == "curated") %>%
distinct(tf, target)
# interactions occurring only in ChIP-seq
d2 = n %>%
distinct(tf, target, evidence) %>%
filter(evidence == "chip_seq") %>%
distinct(tf, target)
d = bind_rows(d1, d2) %>%
distinct() %>%
mutate(confidence = "D")
#### Confidence class E ####
# interaction occuring only TFBS
e1 = n %>%
distinct(tf, target, evidence) %>%
filter(evidence == "tfbs") %>%
distinct() %>%
select(-evidence)
# interaction occuring only in inferred
e2 = n %>%
distinct(tf, target, evidence) %>%
filter(evidence == "inferred") %>%
distinct() %>%
select(-evidence)
e = bind_rows(e1, e2) %>%
mutate(confidence = "E")
#### Combination of all confidence classes ####
# combine all interactions in decreasing confidence
# This leads to duplicated interactions, e.g. an interaction reported in two
# curated databases will have confidence level A (see a1) and D (see d1). We
# prioritize those interactions based on their confidence level (from A to E)
scored_interactions = bind_rows(a, b,c,d,e) %>%
group_by(tf, target) %>%
slice(1) %>%
ungroup() %>%
arrange(tf, target)
#### Fix sign conflict ####
# identify interactions in curated databases with contradictory mor (-1 vs 1)
interaction_with_sign_conflict = n %>%
filter(evidence == "curated" & mor != 0) %>%
distinct(tf, target, mor) %>%
count(tf, target) %>%
filter(n==2) %>%
select(-n)
# do this interaction have further mor evidence in inferred/co-expression data
with_coexpression = n %>%
filter(evidence == "inferred") %>%
semi_join(interaction_with_sign_conflict, by=c("tf", "target"))
# if not check whether this contradictory interactions have a mor in curated
# databases with given priority among the databases
curated_database_priority = c("tf_e","tf_act", "trrust", "trrd_via_tf_act",
"nfi_regulome_db", "oreganno")
wo_coexpression = n %>%
filter(evidence == "curated") %>%
anti_join(with_coexpression, by=c("tf", "target")) %>%
semi_join(interaction_with_sign_conflict, by=c("tf", "target")) %>%
mutate(database = factor(database, levels = curated_database_priority)) %>%
drop_na(database) %>%
arrange(database, tf, target) %>%
group_by(tf, target) %>%
slice(1) %>%
ungroup()
# interaction with changed mor
changed_sign = bind_rows(with_coexpression, wo_coexpression) %>%
transmute(tf, target, mor, evidence = "curated")
# integrate the changed interaction into database
interactions = n %>%
filter(tf %in% tfs) %>%
left_join(changed_sign, by=c("tf", "target", "evidence")) %>%
mutate(mor = case_when(mor.x == 0 ~ 0,
is.na(mor.y) ~ mor.x,
TRUE ~ mor.y)) %>%
select(tf, target, mor, evidence, database) %>%
mutate(mor = case_when(evidence == "inferred" ~ 0,
evidence != "inferred" ~ mor))
#### Build final database ####
# some interaction occur multiple times. Prioritize duplicated interactions
# based on mode of regulation and then on evidence type (see order of factor
# levels)
unique_interactions = interactions %>%
mutate(evidence = factor(evidence, levels = c("curated", "chip_seq",
"tfbs", "inferred")),
mor = factor(mor, levels = c(1,-1, 0))) %>%
arrange(mor, evidence) %>%
group_by(tf, target) %>%
slice(1) %>%
ungroup() %>%
select(tf, target, mor, evidence, database) %>%
mutate(mor = as.numeric(as.character(mor)))
# retrieve database information for each interaction
which_databases = interactions %>%
group_by(tf, target, evidence) %>%
summarise(x = str_c(database, collapse = ",")) %>%
ungroup() %>%
mutate(key = case_when(
evidence == "chip_seq" ~ "which_chip_seq",
evidence == "curated" ~ "which_curated",
evidence == "inferred" ~ "which_inferred",
evidence == "tfbs" ~ "which_tfbs")) %>%
select(-evidence) %>%
spread(key, x, fill = "none")
# retrieve evidence information for each interaction
which_evidence = interactions %>%
distinct(tf, target, evidence) %>%
mutate(evidence = case_when(
evidence == "chip_seq" ~ "is_evidence_chip_seq",
evidence == "curated" ~ "is_evidence_curated",
evidence == "inferred" ~ "is_evidence_inferred",
evidence == "tfbs" ~ "is_evidence_tfbs"
)) %>%
mutate(val = TRUE) %>%
spread(evidence, val, fill=FALSE)
# retrieve pubmed ids for interaction from curated databases
pubmed = list.files("inst/extdata/networks/curated", pattern = "pubmed",
full.names = TRUE, recursive = TRUE) %>%
map_dfr(readRDS) %>%
na_if("N,A")
pubmed_ids = pubmed %>%
drop_na(pubmed_id) %>%
separate_rows(pubmed_id, sep = ",") %>%
distinct(tf, target, pubmed_id) %>%
group_by(tf, target) %>%
summarise(pubmed_id = str_c(pubmed_id, collapse = ",")) %>%
ungroup()
# combine all information (scores, which evidence,which database, pubmed)
entire_database = unique_interactions %>%
inner_join(scored_interactions, by = c("tf", "target")) %>%
inner_join(which_evidence, by=c("tf", "target")) %>%
inner_join(which_databases, by=c("tf", "target")) %>%
left_join(pubmed_ids, by=c("tf", "target")) %>%
replace_na(list(pubmed_id = "-")) %>%
arrange(tf, target) %>%
select(-evidence, -database) %>%
# remove interactions exclusively reported by kegg
filter(!(which_curated == "kegg" & which_chip_seq == "none" &
which_inferred == "none" & which_tfbs == "none"))
# make final database with adapted mor. assign to all interactions mor of 1
# beside known repressors. Those get a mor of -1
tf_annotation = readRDS("inst/extdata/annotations/tf_annotation.rds") %>%
filter(class == "repressors")
final_database_human = entire_database %>%
distinct(tf, target, mor, confidence) %>%
left_join(tf_annotation, by="tf") %>%
mutate(mor = case_when(mor == 0 & is.na(class) ~ 1,
mor == 0 & class == "repressors" ~ -1,
TRUE ~ mor)) %>%
select(-class)
#### Translate final database to mouse symbols ####
anno = readRDS("inst/extdata/annotations/hgnc_mgi_annotation.rds") %>%
filter(!str_detect(mgi_symbol, "^Gm[:digit:]+"))
final_database_mouse = final_database_human %>%
rename(hgnc_symbol = tf) %>%
inner_join(anno, by="hgnc_symbol") %>%
select(tf = mgi_symbol, target, mor, confidence) %>%
# now translate targets
rename(hgnc_symbol = target) %>%
inner_join(anno, by="hgnc_symbol") %>%
distinct(tf, target, mor, confidence, target = mgi_symbol) %>%
group_by(tf, target) %>%
# due to the mapping it can happen that now an interactions has several
# confidence levels/mors. To be more conservative the lowest level/max
# letter is chosen
filter(confidence == max(confidence)) %>%
ungroup() %>%
distinct()
#### Top 10 database - Human ####
# To provide the most confident regulon for each TF, we aggregate the TF–target
# interactions with the highest possible confidence score that resulted in a
# regulon size equal to or greater than 10 targets.
top_10_database_human = final_database_human %>%
add_count(tf, name = "total_interactions") %>%
# filter out tfs with less than 4 targets
filter(total_interactions >= 4) %>%
# remove self-regulation of a TF
filter(tf != target) %>%
nest(regulon = -tf) %>%
mutate(r = regulon %>% map(function(regulon) {
c = regulon %>%
arrange(confidence) %>%
count(confidence) %>%
mutate(cs = cumsum(n)) %>%
filter(cs>=10)
if (nrow(c) == 0) {
summary_confidence = regulon %>%
count(confidence) %>%
top_n(1, n) %>%
pull(confidence)
res = regulon %>%
transmute(summary_confidence, target, mor)
} else {
res = c %>%
slice(1) %>%
mutate(summary_confidence = confidence) %>%
select(-n) %>%
mutate(confidence = str_c(LETTERS[1:which(LETTERS == confidence)],
collapse = ",")) %>%
ungroup() %>%
separate_rows(confidence, sep = ",") %>%
inner_join(regulon, by="confidence") %>%
select(summary_confidence, target, mor)
}
# if mor is unknown (0) assign a positive mode of regulation (1)
res %>%
mutate(mor = case_when(mor == 0 ~ 1,
TRUE ~ mor))
})) %>%
unnest(r) %>%
select(-regulon) %>%
rename(confidence = summary_confidence)
#### Top 10 database - Mouse ####
# To provide the most confident regulon for each TF, we aggregate the TF–target
# interactions with the highest possible confidence score that resulted in a
# regulon size equal to or greater than 10 targets.
top_10_database_mouse = final_database_mouse %>%
add_count(tf, name = "total_interactions") %>%
# filter out tfs with less than 4 targets
filter(total_interactions >= 4) %>%
# remove self-regulation of a TF
filter(tf != target) %>%
nest(regulon = -tf) %>%
mutate(r = regulon %>% map(function(regulon) {
c = regulon %>%
arrange(confidence) %>%
count(confidence) %>%
mutate(cs = cumsum(n)) %>%
filter(cs>=10)
if (nrow(c) == 0) {
summary_confidence = regulon %>%
count(confidence) %>%
top_n(1, n) %>%
pull(confidence)
res = regulon %>%
transmute(summary_confidence, target, mor)
} else {
res = c %>%
slice(1) %>%
mutate(summary_confidence = confidence) %>%
select(-n) %>%
mutate(confidence = str_c(LETTERS[1:which(LETTERS == confidence)],
collapse = ",")) %>%
ungroup() %>%
separate_rows(confidence, sep = ",") %>%
inner_join(regulon, by="confidence") %>%
select(summary_confidence, target, mor)
}
# if mor is unknown (0) assign a positive mode of regulation (1)
res %>%
mutate(mor = case_when(mor == 0 ~ 1,
TRUE ~ mor))
})) %>%
unnest(r) %>%
select(-regulon) %>%
rename(confidence = summary_confidence)
#### Save data ####
### Human
# entire database with meta data
save(entire_database, file = "data/entire_database.rda", compress="xz")
# top 10 database
dorothea_hs = top_10_database_human
save(dorothea_hs, file = "data/dorothea_hs.rda", compress="xz")
### Mouse
# top 10 database
dorothea_mm = top_10_database_mouse
save(dorothea_mm, file = "data/dorothea_mm.rda", compress="xz")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.