if (!require("BiocManager")) { install.packages("BiocManager") } BiocManager::install("glmSparseNet")
library(dplyr) library(ggplot2) library(survival) library(futile.logger) library(curatedTCGAData) library(TCGAutils) library(MultiAssayExperiment) # library(glmSparseNet) # # Some general options for futile.logger the debugging package flog.layout(layout.format("[~l] ~m")) options( "glmSparseNet.show_message" = FALSE, "glmSparseNet.base_dir" = withr::local_tempdir() ) # Setting ggplot2 default theme as minimal theme_set(ggplot2::theme_minimal())
The data is loaded from an online curated dataset downloaded from TCGA using
curatedTCGAData
bioconductor package and processed.
To accelerate the process we use a very reduced dataset down to 107 variables only (genes), which is stored as a data object in this package. However, the procedure to obtain the data manually is described in the following chunk.
# chunk not included as it produces to many unnecessary messages skcm <- tryCatch( { curatedTCGAData( diseaseCode = "SKCM", assays = "RNASeq2GeneNorm", version = "1.1.38", dry.run = FALSE ) }, error = function(err) { NULL } )
skcm <- curatedTCGAData( diseaseCode = "SKCM", assays = "RNASeq2GeneNorm", version = "1.1.38", dry.run = FALSE )
Build the survival data from the clinical columns.
xdata
and ydata
skcmMetastatic <- TCGAutils::TCGAsplitAssays(skcm, "06") xdataRaw <- t(assay(skcmMetastatic[[1]])) # Get survival information ydataRaw <- colData(skcmMetastatic) |> as.data.frame() |> # Find max time between all days (ignoring missings) dplyr::rowwise() |> dplyr::mutate( time = max(days_to_last_followup, days_to_death, na.rm = TRUE ) ) |> # Keep only survival variables and codes dplyr::select(patientID, status = vital_status, time) |> # Discard individuals with survival time less or equal to 0 dplyr::filter(!is.na(time) & time > 0) |> as.data.frame() # Get survival information ydataRaw <- colData(skcm) |> as.data.frame() |> # Find max time between all days (ignoring missings) dplyr::filter( !is.na(days_to_last_followup) | !is.na(days_to_death) ) |> dplyr::rowwise() |> dplyr::mutate( time = max(days_to_last_followup, days_to_death, na.rm = TRUE) ) |> # Keep only survival variables and codes dplyr::select(patientID, status = vital_status, time) |> # Discard individuals with survival time less or equal to 0 dplyr::filter(!is.na(time) & time > 0) |> as.data.frame() # Set index as the patientID rownames(ydataRaw) <- ydataRaw$patientID # keep only features that have standard deviation > 0 xdataRaw <- xdataRaw[ TCGAbarcode(rownames(xdataRaw)) %in% rownames(ydataRaw), ] xdataRaw <- xdataRaw[, apply(xdataRaw, 2, sd) != 0] |> scale() # Order ydata the same as assay ydataRaw <- ydataRaw[TCGAbarcode(rownames(xdataRaw)), ] set.seed(params$seed) smallSubset <- c( "FOXL2", "KLHL5", "PCYT2", "SLC6A10P", "STRAP", "TMEM33", "WT1-AS", sample(colnames(xdataRaw), 100) ) xdata <- xdataRaw[, smallSubset[smallSubset %in% colnames(xdataRaw)]] ydata <- ydataRaw |> dplyr::select(time, status)
Fit model model penalizing by the hubs using the cross-validation function by
cv.glmHub
.
fitted <- cv.glmHub( xdata, Surv(ydata$time, ydata$status), family = "cox", foldid = glmSparseNet:::balancedCvFolds(ydata$status)$output, network = "correlation", options = networkOptions( cutoff = .6, minDegree = .2 ) )
Shows the results of 100
different parameters used to find the optimal value
in 10-fold cross-validation. The two vertical dotted lines represent the best
model and a model with less variables selected (genes), but within a standard
error distance from the best.
plot(fitted)
Taking the best model described by lambda.min
coefsCV <- Filter(function(.x) .x != 0, coef(fitted, s = "lambda.min")[, 1]) data.frame( ensembl.id = names(coefsCV), gene.name = geneNames(names(coefsCV))$external_gene_name, coefficient = coefsCV, stringsAsFactors = FALSE ) |> arrange(gene.name) |> knitr::kable()
separate2GroupsCox(as.vector(coefsCV), xdata[, names(coefsCV)], ydata, plotTitle = "Full dataset", legendOutside = FALSE )
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.