if (!require("BiocManager")) { install.packages("BiocManager") } BiocManager::install("glmSparseNet")
library(dplyr) library(ggplot2) library(survival) library(futile.logger) library(curatedTCGAData) library(MultiAssayExperiment) library(TCGAutils) # library(glmSparseNet) # # Some general options for futile.logger the debugging package flog.layout(layout.format("[~l] ~m")) options( "glmSparseNet.show_message" = FALSE, "glmSparseNet.base_dir" = withr::local_tempdir() ) # Setting ggplot2 default theme as minimal theme_set(ggplot2::theme_minimal())
The data is loaded from an online curated dataset downloaded from TCGA using
curatedTCGAData
bioconductor package and processed.
To accelerate the process we use a very reduced dataset down to 107 variables only (genes), which is stored as a data object in this package. However, the procedure to obtain the data manually is described in the following chunk.
brca <- tryCatch( { curatedTCGAData( diseaseCode = "BRCA", assays = "RNASeq2GeneNorm", version = "1.1.38", dry.run = FALSE ) }, error = function(err) { NULL } )
brca <- curatedTCGAData( diseaseCode = "BRCA", assays = "RNASeq2GeneNorm", version = "1.1.38", dry.run = FALSE )
brca <- TCGAutils::TCGAsplitAssays(brca, c("01", "11")) xdataRaw <- t(cbind(assay(brca[[1]]), assay(brca[[2]]))) # Get matches between survival and assay data classV <- TCGAbiospec(rownames(xdataRaw))$sample_definition |> factor() names(classV) <- rownames(xdataRaw) # keep features with standard deviation > 0 xdataRaw <- xdataRaw[, apply(xdataRaw, 2, sd) != 0] |> scale() set.seed(params$seed) smallSubset <- c( "CD5", "CSF2RB", "HSF1", "IRGC", "LRRC37A6P", "NEUROG2", "NLRC4", "PDE11A", "PIK3CB", "QARS", "RPGRIP1L", "SDC1", "TMEM31", "YME1L1", "ZBTB11", sample(colnames(xdataRaw), 100) ) xdata <- xdataRaw[, smallSubset[smallSubset %in% colnames(xdataRaw)]] ydata <- classV
Fit model model penalizing by the hubs using the cross-validation function by
cv.glmHub
.
fitted <- cv.glmHub(xdata, ydata, family = "binomial", network = "correlation", nlambda = 1000, options = networkOptions( cutoff = .6, minDegree = .2 ) )
Shows the results of 1000
different parameters used to find the optimal value
in 10-fold cross-validation. The two vertical dotted lines represent the best
model and a model with less variables selected (genes), but within a standard
error distance from the best.
plot(fitted)
Taking the best model described by lambda.min
coefsCV <- Filter(function(.x) .x != 0, coef(fitted, s = "lambda.min")[, 1]) data.frame( ensembl.id = names(coefsCV), gene.name = geneNames(names(coefsCV))$external_gene_name, coefficient = coefsCV, stringsAsFactors = FALSE ) |> arrange(gene.name) |> knitr::kable()
resp <- predict(fitted, s = "lambda.min", newx = xdata, type = "class") flog.info("Misclassified (%d)", sum(ydata != resp)) flog.info( " * False primary solid tumour: %d", sum(resp != ydata & resp == "Primary Solid Tumor") ) flog.info( " * False normal : %d", sum(resp != ydata & resp == "Solid Tissue Normal") )
Histogram of predicted response
response <- predict(fitted, s = "lambda.min", newx = xdata, type = "response") qplot(response, bins = 100)
ROC curve
rocObj <- pROC::roc(ydata, as.vector(response)) data.frame(TPR = rocObj$sensitivities, FPR = 1 - rocObj$specificities) |> ggplot() + geom_line(aes(FPR, TPR), color = 2, size = 1, alpha = 0.7) + labs( title = sprintf("ROC curve (AUC = %f)", pROC::auc(rocObj)), x = "False Positive Rate (1-Specificity)", y = "True Positive Rate (Sensitivity)" )
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.