skip_on_cran()
skip_on_os(c("mac", "solaris"))
skip_if_not_installed("glmmTMB")
skip_if_not_installed("marginaleffects")
skip_if_not_installed("lme4")
skip_if_not_installed("emmeans")
skip_if_not_installed("withr")
withr::with_options(
list(ggeffects_warning_bias_correction = FALSE),
test_that("validate ggpredict against predict, nbinom", {
data(Owls, package = "glmmTMB")
data(Salamanders, package = "glmmTMB")
m1 <- suppressWarnings(glmmTMB::glmmTMB(
SiblingNegotiation ~ SexParent + ArrivalTime + (1 | Nest),
data = Owls,
family = glmmTMB::nbinom1()
))
m2 <- glmmTMB::glmmTMB(
SiblingNegotiation ~ SexParent + ArrivalTime + (1 | Nest),
data = Owls,
family = glmmTMB::nbinom2()
)
m4 <- glmmTMB::glmmTMB(
SiblingNegotiation ~ FoodTreatment + ArrivalTime + SexParent + (1 | Nest),
data = Owls,
ziformula = ~1,
family = glmmTMB::truncated_poisson(link = "log")
)
nd <- data_grid(m1, "SexParent")
pr <- predict(m1, newdata = nd, type = "link", se.fit = TRUE)
linv <- insight::link_inverse(m1)
dof <- insight::get_df(m1, type = "wald", verbose = FALSE)
tcrit <- stats::qt(0.975, df = dof)
out1 <- data.frame(
predicted = linv(pr$fit),
conf.low = linv(pr$fit - tcrit * pr$se.fit),
conf.high = linv(pr$fit + tcrit * pr$se.fit)
)
out2 <- ggpredict(m1, "SexParent")
expect_equal(out1$predicted, out2$predicted, tolerance = 1e-4, ignore_attr = TRUE)
expect_equal(out1$conf.low, out2$conf.low, tolerance = 1e-4, ignore_attr = TRUE)
expect_equal(out1$conf.high, out2$conf.high, tolerance = 1e-4, ignore_attr = TRUE)
expect_s3_class(ggpredict(m1, c("ArrivalTime", "SexParent")), "data.frame")
expect_s3_class(ggpredict(m2, c("ArrivalTime", "SexParent")), "data.frame")
expect_s3_class(ggpredict(m4, c("FoodTreatment", "ArrivalTime [21,24,30]", "SexParent")), "data.frame") # nolint
expect_s3_class(
ggpredict(m1, c("ArrivalTime", "SexParent"), type = "random", verbose = FALSE),
"data.frame"
)
expect_s3_class(
ggpredict(m4, c("FoodTreatment", "ArrivalTime [21,24,30]", "SexParent"), type = "random", verbose = FALSE), # nolint
"data.frame"
)
expect_message(ggpredict(m1, c("ArrivalTime", "SexParent"), type = "zero_inflated"))
p1 <- ggpredict(m1, c("ArrivalTime", "SexParent"))
p2 <- ggpredict(m2, c("ArrivalTime", "SexParent"))
p3 <- ggemmeans(m1, c("ArrivalTime", "SexParent"))
p4 <- ggemmeans(m2, c("ArrivalTime", "SexParent"))
expect_equal(p1$predicted[1], p3$predicted[1], tolerance = 1e-3)
expect_equal(p2$predicted[1], p4$predicted[1], tolerance = 1e-3)
# test messages for unit- and population level predictions
expect_message(
predict_response(m1, "Nest"),
regex = "All focal terms are included"
)
expect_message(
predict_response(m1, "SexParent", type = "random"),
regex = "It seems that unit-level predictions"
)
})
)
withr::with_options(
list(ggeffects_warning_bias_correction = FALSE),
test_that("validate ggpredict lmer against marginaleffects", {
data(Owls, package = "glmmTMB")
m1 <- suppressWarnings(glmmTMB::glmmTMB(
SiblingNegotiation ~ SexParent + ArrivalTime + (1 | Nest),
data = Owls,
family = glmmTMB::nbinom1()
))
out1 <- suppressWarnings(marginaleffects::predictions(
m1,
variables = "SexParent",
newdata = marginaleffects::datagrid(m1),
vcov = FALSE,
re.form = NULL
))
out1 <- out1[order(out1$SexParent), ]
out2 <- ggpredict(
m1,
"SexParent",
condition = c(Nest = "Oleyes"),
type = "random",
verbose = FALSE
)
expect_equal(
out1$estimate,
out2$predicted,
tolerance = 1e-4,
ignore_attr = TRUE
)
})
)
data(Salamanders, package = "glmmTMB")
m3 <- glmmTMB::glmmTMB(
count ~ spp + mined + (1 | site),
ziformula = ~ spp + mined,
family = glmmTMB::truncated_poisson(),
data = Salamanders
)
m4 <- glmmTMB::glmmTMB(
count ~ spp + mined + (1 | site),
ziformula = ~ spp + mined + (1 | site),
family = glmmTMB::truncated_poisson(),
data = Salamanders
)
m5 <- glmmTMB::glmmTMB(
count ~ spp + mined + cover + (1 | site),
ziformula = ~ spp + mined,
family = glmmTMB::truncated_poisson(),
data = Salamanders
)
test_that("ggpredict, glmmTMB", {
p1 <- ggpredict(m3, "mined", type = "fixed", verbose = FALSE)
p2 <- ggpredict(m3, "mined", type = "zero_inflated", verbose = FALSE)
p3 <- ggpredict(m3, "mined", interval = "prediction", verbose = FALSE)
p4 <- ggpredict(m3, "mined", type = "zero_inflated", interval = "prediction", verbose = FALSE)
expect_gt(p3$conf.high[1], p1$conf.high[1])
expect_gt(p4$conf.high[1], p2$conf.high[1])
expect_s3_class(ggpredict(m3, "mined", type = "zero_inflated", verbose = FALSE), "data.frame")
})
test_that("ggpredict and ggaverage, glmmTMB", {
mx <- glmmTMB::glmmTMB(
count ~ mined + (1 | site),
ziformula = ~mined,
family = poisson(),
data = Salamanders
)
# make sure that "type" arguments return the same results
p1 <- ggpredict(mx, "mined", verbose = FALSE)
p2 <- ggaverage(mx, "mined", verbose = FALSE)
expect_equal(p1$predicted, p2$predicted, tolerance = 0.1)
p1 <- ggpredict(mx, "mined", type = "fixed", verbose = FALSE)
p2 <- ggaverage(mx, "mined", type = "fixed", verbose = FALSE)
expect_equal(p1$predicted, p2$predicted, tolerance = 0.1)
p1 <- ggpredict(mx, "mined", type = "zero_inflated", verbose = FALSE)
p2 <- ggaverage(mx, "mined", type = "zero_inflated", verbose = FALSE)
expect_equal(p1$predicted, p2$predicted, tolerance = 0.1)
p1 <- ggpredict(mx, "mined", type = "zi_prob", verbose = FALSE)
p2 <- ggaverage(mx, "mined", type = "zi_prob", verbose = FALSE)
expect_equal(p1$predicted, p2$predicted, tolerance = 0.1)
})
test_that("ggpredict, glmmTMB", {
p1 <- ggpredict(m5, c("mined", "spp", "cover"), type = "fixed", verbose = FALSE)
p3 <- ggemmeans(m5, c("mined", "spp", "cover"), type = "fixed", verbose = FALSE)
expect_equal(p1$predicted[1], p3$predicted[1], tolerance = 1e-3)
})
test_that("ggpredict, glmmTMB", {
p1 <- ggpredict(m3, "mined", type = "fixed", verbose = FALSE)
p2 <- ggpredict(m3, c("mined", "spp"), type = "zero_inflated", verbose = FALSE)
p3 <- ggemmeans(m3, "mined", type = "fixed", condition = c(spp = "GP"), verbose = FALSE)
p4 <- ggemmeans(m3, c("mined", "spp"), type = "zero_inflated", verbose = FALSE)
p5 <- ggpredict(m3, c("mined", "spp"), type = "fixed", verbose = FALSE)
p6 <- ggemmeans(m3, c("mined", "spp"), type = "fixed", verbose = FALSE)
expect_equal(p1$predicted[1], p3$predicted[1], tolerance = 1e-3)
# expect_equal(p2$predicted[1], p4$predicted[1], tolerance = 1e-3)
expect_equal(p5$predicted[1], p6$predicted[1], tolerance = 1e-3)
})
test_that("ggpredict, glmmTMB", {
skip_on_os("linux")
set.seed(123)
out <- ggemmeans(m3, "mined", type = "zero_inflated", verbose = FALSE)
expect_equal(out$conf.low, c(0.04904, 1.31134), tolerance = 1e-1)
set.seed(123)
out1 <- ggpredict(m3, "mined", type = "simulate", verbose = FALSE)
out2 <- ggaverage(m3, "mined", type = "response", verbose = FALSE)
expect_equal(out1$predicted, out2$predicted, tolerance = 1e-2)
})
test_that("ggpredict, glmmTMB", {
p1 <- ggpredict(m4, "mined", type = "fixed", verbose = FALSE)
p2 <- ggpredict(m4, "mined", type = "zero_inflated", verbose = FALSE)
p3 <- ggpredict(m4, "mined", interval = "prediction", verbose = FALSE)
p4 <- ggpredict(m4, "mined", type = "zero_inflated", interval = "prediction", verbose = FALSE)
expect_gt(p3$conf.high[1], p1$conf.high[1])
expect_gt(p4$conf.high[1], p2$conf.high[1])
p1 <- ggpredict(m4, c("spp", "mined"), type = "fixed", verbose = FALSE)
p2 <- ggpredict(m4, c("spp", "mined"), type = "zero_inflated", verbose = FALSE)
p3 <- ggpredict(m4, c("spp", "mined"), interval = "prediction", verbose = FALSE)
p4 <- ggpredict(m4, c("spp", "mined"), type = "zero_inflated", interval = "prediction", verbose = FALSE)
expect_gt(p3$conf.high[1], p1$conf.high[1])
expect_gt(p4$conf.high[1], p2$conf.high[1])
})
test_that("ggpredict, glmmTMB", {
p <- ggpredict(m3, "spp", type = "zero_inflated", verbose = FALSE)
expect_true(all(p$conf.low > 0))
set.seed(100)
p <- ggpredict(m3, "spp", type = "zero_inflated", verbose = FALSE)
expect_true(all(p$conf.low > 0))
})
test_that("ggpredict, glmmTMB-simulate", {
expect_s3_class(ggpredict(m3, "mined", type = "simulate"), "data.frame")
expect_s3_class(ggpredict(m3, c("spp", "mined"), type = "simulate"), "data.frame")
expect_s3_class(ggpredict(m4, "mined", type = "simulate"), "data.frame")
expect_s3_class(ggpredict(m4, c("spp", "mined"), type = "simulate"), "data.frame")
})
test_that("ggpredict, glmmTMB", {
data(Salamanders, package = "glmmTMB")
md <- glmmTMB::glmmTMB(
count ~ spp + mined + (1 | site),
ziformula = ~ spp + mined,
dispformula = ~DOY,
family = glmmTMB::truncated_poisson(),
data = Salamanders
)
p1 <- ggpredict(md, c("spp", "mined"), type = "fixed", verbose = FALSE)
p2 <- ggpredict(md, c("spp", "mined"), type = "zero_inflated", verbose = FALSE)
p3 <- suppressWarnings(ggpredict(md, c("spp", "mined"), interval = "prediction", verbose = FALSE))
p4 <- suppressWarnings(ggpredict(md, c("spp", "mined"), interval = "prediction", verbose = FALSE))
expect_gt(p3$conf.high[1], p1$conf.high[1])
expect_gt(p4$conf.high[1], p2$conf.high[1])
})
test_that("ggpredict, glmmTMB", {
data(efc_test)
m5 <- glmmTMB::glmmTMB(
negc7d ~ c12hour + e42dep + c161sex + c172code + (1 | grp),
data = efc_test, ziformula = ~c172code,
family = binomial(link = "logit")
)
expect_s3_class(ggpredict(m5, "c161sex", type = "fixed", verbose = FALSE), "data.frame")
expect_s3_class(ggpredict(m5, "c161sex", type = "zero_inflated", verbose = FALSE), "data.frame")
expect_s3_class(ggpredict(m5, "c161sex", type = "random", verbose = FALSE), "data.frame")
expect_s3_class(ggpredict(m5, "c161sex", type = "zero_inflated_random", verbose = FALSE), "data.frame")
})
test_that("validate ggpredict against predict, binomial", {
data(efc_test)
m6 <- glmmTMB::glmmTMB(
negc7d ~ c12hour + e42dep + c161sex + c172code + (1 | grp),
data = efc_test,
family = binomial(link = "logit")
)
expect_s3_class(ggpredict(m6, "c161sex", type = "fixed", verbose = FALSE), "data.frame")
expect_s3_class(ggpredict(m6, "c161sex", type = "random", verbose = FALSE), "data.frame")
nd <- data_grid(m6, "e42dep")
pr <- predict(m6, newdata = nd, type = "link", se.fit = TRUE)
linv <- insight::link_inverse(m6)
dof <- insight::get_df(m6, type = "wald", verbose = FALSE)
tcrit <- stats::qt(0.975, df = dof)
out1 <- data.frame(
predicted = linv(pr$fit),
conf.low = linv(pr$fit - tcrit * pr$se.fit),
conf.high = linv(pr$fit + tcrit * pr$se.fit)
)
out2 <- ggpredict(m6, "e42dep")
expect_equal(out1$predicted, out2$predicted, tolerance = 1e-4, ignore_attr = TRUE)
expect_equal(out1$conf.low, out2$conf.low, tolerance = 1e-4, ignore_attr = TRUE)
expect_equal(out1$conf.high, out2$conf.high, tolerance = 1e-4, ignore_attr = TRUE)
})
test_that("ggpredict, glmmTMB", {
data(efc_test)
efc_test$tot_sc_e <- as.numeric(efc_test$tot_sc_e)
efc_test$c172code <- as.factor(efc_test$c172code)
m7 <- glmmTMB::glmmTMB(
tot_sc_e ~ neg_c_7 * c172code + c161sex + (1 | grp),
data = efc_test, ziformula = ~c172code,
family = glmmTMB::nbinom1()
)
expect_s3_class(ggpredict(m7, "neg_c_7"), "data.frame")
expect_s3_class(ggpredict(m7, "neg_c_7 [all]"), "data.frame")
expect_s3_class(ggpredict(m7, "neg_c_7", type = "zero_inflated"), "data.frame")
expect_s3_class(ggpredict(m7, "neg_c_7 [all]", type = "zero_inflated"), "data.frame")
expect_s3_class(ggpredict(m7, c("neg_c_7", "c172code")), "data.frame")
expect_s3_class(ggpredict(m7, c("neg_c_7 [all]", "c172code")), "data.frame")
expect_s3_class(ggpredict(m7, c("neg_c_7", "c172code"), type = "zero_inflated"), "data.frame")
expect_s3_class(ggpredict(m7, c("neg_c_7 [all]", "c172code"), type = "zero_inflated"), "data.frame")
})
test_that("ggpredict, glmmTMB", {
data(efc_test)
efc_test$tot_sc_e <- as.numeric(efc_test$tot_sc_e)
efc_test$c172code <- as.factor(efc_test$c172code)
m8 <- glmmTMB::glmmTMB(
tot_sc_e ~ neg_c_7 * c172code + (1 | grp),
data = efc_test, ziformula = ~c172code,
family = glmmTMB::nbinom1()
)
expect_s3_class(ggpredict(m8, "neg_c_7"), "data.frame")
expect_s3_class(ggpredict(m8, "neg_c_7 [all]"), "data.frame")
expect_s3_class(ggpredict(m8, "neg_c_7", type = "zero_inflated"), "data.frame")
expect_s3_class(ggpredict(m8, "neg_c_7 [all]", type = "zero_inflated"), "data.frame")
expect_s3_class(ggpredict(m8, c("neg_c_7", "c172code")), "data.frame")
expect_s3_class(ggpredict(m8, c("neg_c_7 [all]", "c172code")), "data.frame")
expect_s3_class(ggpredict(m8, c("neg_c_7", "c172code"), type = "zero_inflated"), "data.frame")
expect_s3_class(ggpredict(m8, c("neg_c_7 [all]", "c172code"), type = "zero_inflated"), "data.frame")
# test predictoin intervals
m9 <- glmmTMB::glmmTMB(
tot_sc_e ~ neg_c_7 + c172code + (1 | grp),
data = efc_test, ziformula = ~c172code,
family = glmmTMB::nbinom1()
)
d <- data_grid(m9, "c172code")
# count model, confidence intervals
out <- predict_response(m9, "c172code", verbose = FALSE)
expect_equal(out$predicted, c(0.7024, 0.98046, 1.30764), tolerance = 1e-4)
expect_equal(out$conf.high, c(0.92549, 1.21318, 1.8271), tolerance = 1e-4)
expect_equal(out$predicted, predict(m9, newdata = d, re.form = NA, type = "conditional"), tolerance = 1e-4)
# count model, prediction intervals
out <- predict_response(m9, "c172code", interval = "prediction", verbose = FALSE)
expect_equal(out$predicted, c(0.7024, 0.98046, 1.30764), tolerance = 1e-4)
expect_equal(out$conf.high, c(1.66211, 2.27867, 3.15855), tolerance = 1e-4)
expect_equal(out$predicted, predict(m9, newdata = d, re.form = NA, type = "conditional"), tolerance = 1e-4)
# zero-inflated model, CI
set.seed(123)
out <- predict_response(m9, "c172code", type = "zero_inflated", verbose = FALSE)
expect_equal(out$predicted, c(0.7024, 0.98046, 1.17279), tolerance = 1e-4)
expect_equal(out$conf.high, c(1.14341, 1.5738, 1.64859), tolerance = 1e-4)
expect_equal(out$predicted, predict(m9, newdata = d, re.form = NA, type = "response"), tolerance = 1e-4)
# zero-inflated model, PI
set.seed(123)
out <- predict_response(m9, "c172code", type = "zero_inflated", interval = "prediction")
expect_equal(out$predicted, c(0.7024, 0.98046, 1.17279), tolerance = 1e-4)
expect_equal(out$conf.high, c(2.58571, 3.559, 3.72815), tolerance = 1e-4)
expect_equal(out$predicted, predict(m9, newdata = d, re.form = NA, type = "response"), tolerance = 1e-4)
})
test_that("ggpredict, glmmTMB", {
data(Salamanders, package = "glmmTMB")
m9 <- glmmTMB::glmmTMB(
count ~ spp + cover + mined + (1 | site),
ziformula = ~DOY,
dispformula = ~spp,
data = Salamanders,
family = glmmTMB::nbinom2()
)
expect_s3_class(ggpredict(m9, c("cover", "mined", "spp"), type = "fixed"), "data.frame")
expect_s3_class(ggpredict(m9, c("cover", "mined", "spp"), type = "zero_inflated"), "data.frame") # nolint
expect_s3_class(suppressWarnings(ggpredict(m9, c("cover", "mined", "spp"), type = "random", verbose = FALSE)), "data.frame") # nolint
expect_s3_class(suppressWarnings(ggpredict(m9, c("cover", "mined", "spp"), type = "zero_inflated_random", verbose = FALSE)), "data.frame") # nolint
})
test_that("validate ggpredict against predict, linear, REML-fit", {
data(sleepstudy, package = "lme4")
# REML-fit
m10 <- glmmTMB::glmmTMB(
Reaction ~ Days + (1 + Days | Subject),
data = sleepstudy,
REML = TRUE
)
nd <- data_grid(m10, "Days")
pr <- predict(m10, newdata = nd, type = "link", se.fit = TRUE)
dof <- insight::get_df(m10, type = "wald", verbose = FALSE)
tcrit <- stats::qt(0.975, df = dof)
out1 <- data.frame(
predicted = pr$fit,
conf.low = pr$fit - tcrit * pr$se.fit,
conf.high = pr$fit + tcrit * pr$se.fit
)
out2 <- ggpredict(m10, "Days", type = "random", interval = "confidence", verbose = FALSE)
expect_equal(out1$predicted, out2$predicted, tolerance = 1e-4, ignore_attr = TRUE)
expect_equal(out1$conf.low, out2$conf.low, tolerance = 1e-4, ignore_attr = TRUE)
expect_equal(out1$conf.high, out2$conf.high, tolerance = 1e-4, ignore_attr = TRUE)
# ML-fit
m11 <- glmmTMB::glmmTMB(
Reaction ~ Days + (1 + Days | Subject),
data = sleepstudy,
REML = FALSE
)
nd <- data_grid(m11, "Days")
pr <- predict(m11, newdata = nd, type = "link", se.fit = TRUE)
dof <- insight::get_df(m11, type = "wald", verbose = FALSE)
tcrit <- stats::qt(0.975, df = dof)
out1 <- data.frame(
predicted = pr$fit,
conf.low = pr$fit - tcrit * pr$se.fit,
conf.high = pr$fit + tcrit * pr$se.fit
)
out2 <- ggpredict(m11, "Days")
out3 <- ggpredict(m11, "Days", type = "random", interval = "confidence", verbose = FALSE)
expect_equal(out1$predicted, out2$predicted, tolerance = 1e-4, ignore_attr = TRUE)
expect_equal(out1$predicted, out3$predicted, tolerance = 1e-4, ignore_attr = TRUE)
expect_equal(out1$conf.low, out2$conf.low, tolerance = 1e-4, ignore_attr = TRUE)
expect_equal(out1$conf.low, out3$conf.low, tolerance = 1e-4, ignore_attr = TRUE)
expect_equal(out1$conf.high, out2$conf.high, tolerance = 1e-4, ignore_attr = TRUE)
expect_equal(out1$conf.high, out3$conf.high, tolerance = 1e-4, ignore_attr = TRUE)
})
test_that("glmmTMB, validate all functions against predict", {
data(Salamanders, package = "glmmTMB")
m <- glmmTMB::glmmTMB(
count ~ spp + (1 | site),
ziformula = ~spp,
family = glmmTMB::truncated_poisson(),
data = Salamanders
)
nd <- new_data(m, "spp")
out1 <- exp(predict(m, newdata = nd, type = "link"))
out2 <- ggpredict(m, "spp", type = "fixed")
out3 <- ggaverage(m, "spp", type = "conditional")
out4 <- suppressWarnings(marginaleffects::avg_predictions(
m,
variables = "spp",
type = "conditional",
re.form = NULL
))
expect_equal(out1, out2$predicted, tolerance = 1e-3, ignore_attr = TRUE)
expect_equal(out3$predicted, out4$estimate, tolerance = 1e-3, ignore_attr = TRUE)
expect_equal(
out3$predicted,
c(2.36678, 1.70466, 2.7653, 2.05614, 3.94502, 3.74413, 2.38322),
tolerance = 1e-3,
ignore_attr = TRUE
)
out1 <- predict(m, newdata = nd, type = "response")
out2 <- ggpredict(m, "spp", type = "zero_inflated")
out3 <- ggaverage(m, "spp", type = "zero_inflated")
out4 <- suppressWarnings(marginaleffects::avg_predictions(m, variables = "spp", re.form = NULL))
expect_equal(out1, out2$predicted, tolerance = 1e-3, ignore_attr = TRUE)
expect_equal(out3$predicted, out4$estimate, tolerance = 1e-3, ignore_attr = TRUE)
})
test_that("glmmTMB, orderedbeta", {
skip_if_not_installed("datawizard")
data(mtcars)
mtcars$ord <- datawizard::normalize(mtcars$mpg)
m <- glmmTMB::glmmTMB(
ord ~ wt + hp + as.factor(gear) + (1 | cyl),
data = mtcars,
family = glmmTMB::ordbeta()
)
out1 <- ggpredict(m, "hp [50,80,120,150,250,330]")
out2 <- ggaverage(m, "hp [50,80,120,150,250,330]")
expect_snapshot(print(out1))
expect_snapshot(print(out2))
})
test_that("glmmTMB, orderedbeta", {
skip_if_not_installed("emmeans")
mod1 <- glmmTMB::glmmTMB(count ~ spp + mined + (1 | site),
ziformula = ~mined,
family = glmmTMB::nbinom2, data = Salamanders
)
out1 <- ggemmeans(mod1, c("mined", "spp"), type = "zero_inflated")
out2 <- ggpredict(mod1, c("mined", "spp"), type = "zero_inflated")
expect_equal(
out1$predicted,
c(
0.2127, 0.0539, 0.2872, 0.1009, 0.3675, 0.4351, 0.2534, 1.8883,
0.4783, 2.5505, 0.8956, 3.2636, 3.8639, 2.2505
),
tolerance = 1e-3
)
expect_equal(out1$predicted, out2$predicted, tolerance = 1e-3)
})
test_that("glmmTMB, inverse-link", {
data(warpbreaks)
set.seed(123)
warpbreaks$ID <- sample.int(5, nrow(warpbreaks), replace = TRUE)
m <- suppressWarnings(glmmTMB::glmmTMB(
breaks ~ wool * tension + (1 | ID),
family = Gamma(),
data = warpbreaks
))
out <- predict_response(m, c("wool", "tension"))
expect_equal(
out$predicted,
c(44.63071, 23.98565, 24.60601, 28.16438, 28.58486, 18.80825),
tolerance = 1e-3
)
expect_true(all(out$predicted > out$conf.low))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.