skip_on_os(c("mac", "solaris"))
skip_if_not_installed("lme4")
skip_if_not_installed("effects")
skip_if_not_installed("emmeans")
skip_if_not_installed("withr")
withr::with_environment(
new.env(),
test_that("validate ggpredict glm against predict", {
data(efc, package = "ggeffects")
efc$neg_c_7d <- as.numeric(efc$neg_c_7 > median(efc$neg_c_7, na.rm = TRUE))
d <- efc
fit <- glm(neg_c_7d ~ c12hour + e42dep + c161sex + c172code, data = d, family = binomial(link = "logit"))
m <- glm(
cbind(incidence, size - incidence) ~ period,
family = binomial,
data = lme4::cbpp
)
nd <- data_grid(fit, "c12hour [10, 50, 100]")
pr <- predict(fit, newdata = nd, se.fit = TRUE, type = "link")
expected <- stats::plogis(pr$fit + stats::qnorm(0.975) * pr$se.fit)
predicted <- ggpredict(fit, "c12hour [10, 50, 100]")
expect_equal(predicted$conf.high, expected, tolerance = 1e-3, ignore_attr = TRUE)
expect_equal(predicted$predicted, stats::plogis(pr$fit), tolerance = 1e-3, ignore_attr = TRUE)
})
)
withr::with_environment(
new.env(),
test_that("validate ggpredict glm against predict 2", {
data(efc, package = "ggeffects")
efc$neg_c_7d <- as.numeric(efc$neg_c_7 > median(efc$neg_c_7, na.rm = TRUE))
d <- efc
fit <- glm(neg_c_7d ~ c12hour + e42dep + c161sex + c172code, data = d, family = binomial(link = "logit"))
m <- glm(
cbind(incidence, size - incidence) ~ period,
family = binomial,
data = lme4::cbpp
)
nd <- data_grid(m, "period")
pr <- predict(m, newdata = nd, se.fit = TRUE, type = "link")
expected <- stats::plogis(pr$fit + stats::qnorm(0.975) * pr$se.fit)
predicted <- ggpredict(m, "period")
expect_equal(predicted$conf.high, expected, tolerance = 1e-3, ignore_attr = TRUE)
expect_equal(predicted$predicted, stats::plogis(pr$fit), tolerance = 1e-3, ignore_attr = TRUE)
})
)
withr::with_environment(
new.env(),
test_that("ggpredict, glm", {
data(efc, package = "ggeffects")
efc$neg_c_7d <- as.numeric(efc$neg_c_7 > median(efc$neg_c_7, na.rm = TRUE))
d <- efc
fit <- glm(neg_c_7d ~ c12hour + e42dep + c161sex + c172code, data = d, family = binomial(link = "logit"))
m <- glm(
cbind(incidence, size - incidence) ~ period,
family = binomial,
data = lme4::cbpp
)
expect_s3_class(ggpredict(fit, "c12hour", verbose = FALSE), "data.frame")
expect_s3_class(ggpredict(fit, c("c12hour", "c161sex"), verbose = FALSE), "data.frame")
expect_s3_class(ggpredict(fit, c("c12hour", "c161sex", "c172code"), verbose = FALSE), "data.frame")
expect_s3_class(ggeffect(fit, "c12hour", verbose = FALSE), "data.frame")
expect_s3_class(ggeffect(fit, c("c12hour", "c161sex"), verbose = FALSE), "data.frame")
expect_s3_class(ggeffect(fit, c("c12hour", "c161sex", "c172code"), verbose = FALSE), "data.frame")
expect_s3_class(ggemmeans(fit, "c12hour", verbose = FALSE), "data.frame")
expect_s3_class(ggemmeans(fit, c("c12hour", "c161sex"), verbose = FALSE), "data.frame")
expect_s3_class(ggemmeans(fit, c("c12hour", "c161sex", "c172code"), verbose = FALSE), "data.frame")
p1 <- ggpredict(m, "period", verbose = FALSE)
p2 <- ggeffect(m, "period", verbose = FALSE)
p3 <- ggemmeans(m, "period", verbose = FALSE)
expect_equal(p1$predicted[1], 0.2194245, tolerance = 1e-3)
expect_equal(p2$predicted[1], 0.2194245, tolerance = 1e-3)
expect_equal(p3$predicted[1], 0.2194245, tolerance = 1e-3)
})
)
withr::with_environment(
new.env(),
test_that("ggpredict, glm, robust", {
data(efc, package = "ggeffects")
efc$neg_c_7d <- as.numeric(efc$neg_c_7 > median(efc$neg_c_7, na.rm = TRUE))
d <- efc
fit <- glm(neg_c_7d ~ c12hour + e42dep + c161sex + c172code, data = d, family = binomial(link = "logit"))
m <- glm(
cbind(incidence, size - incidence) ~ period,
family = binomial,
data = lme4::cbpp
)
expect_s3_class(
ggpredict(fit, "c12hour", vcov = "HC1", verbose = FALSE),
"data.frame"
)
expect_s3_class(
ggpredict(fit, c("c12hour", "c161sex"), vcov = "HC1", verbose = FALSE),
"data.frame"
)
expect_s3_class(
ggpredict(fit, c("c12hour", "c161sex", "c172code"), vcov = "HC1", verbose = FALSE),
"data.frame"
)
expect_s3_class(ggpredict(m, "period", vcov = "HC1"), "data.frame")
})
)
withr::with_environment(
new.env(),
test_that("ggeffects, glm-matrix-columns", {
data(cbpp, package = "lme4")
cbpp$trials <- cbpp$size - cbpp$incidence
d2 <- cbpp
m1 <- lme4::glmer(cbind(incidence, trials) ~ period + (1 | herd), data = d2, family = binomial)
m2 <- lme4::glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = d2, family = binomial)
m3 <- glm(cbind(incidence, trials) ~ period, data = d2, family = binomial)
m4 <- glm(cbind(incidence, size - incidence) ~ period, data = d2, family = binomial)
expect_s3_class(ggpredict(m1, "period"), "data.frame")
expect_s3_class(ggpredict(m2, "period"), "data.frame")
expect_s3_class(ggpredict(m3, "period"), "data.frame")
expect_s3_class(ggpredict(m4, "period"), "data.frame")
expect_s3_class(ggemmeans(m1, "period"), "data.frame")
expect_s3_class(ggemmeans(m2, "period"), "data.frame")
expect_s3_class(ggemmeans(m3, "period"), "data.frame")
expect_s3_class(ggemmeans(m4, "period"), "data.frame")
})
)
test_that("ggaverage, invlink", {
skip_if_not_installed("marginaleffects")
dat2 <- data.frame(
sex = c("m", "w", "w", "m", "w", "w", "m", "w", "w", "m", "m", "w", "w"),
smoking = c(0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1),
age = c(10, 45, 50, 40, 45, 12, 14, 55, 60, 10, 14, 50, 40),
stringsAsFactors = FALSE
)
m3 <- glm(smoking ~ sex, data = dat2, family = binomial("logit"))
out1 <- ggaverage(m3, "sex", verbose = FALSE)
out2 <- marginaleffects::avg_predictions(m3, variables = "sex", type = "invlink(link)")
expect_equal(out1$predicted, out2$estimate, tolerance = 1e-4)
expect_equal(out1$conf.low, out2$conf.low, tolerance = 1e-4)
expect_equal(out1$conf.high, out2$conf.high, tolerance = 1e-4)
})
test_that("ggpredict, Gamma with invers-link", {
data(warpbreaks)
mod <- glm(breaks ~ wool * tension, family = Gamma(), data = warpbreaks)
em <- as.data.frame(suppressMessages(emmeans::emmeans(mod, c("wool", "tension"), type = "response")))
out <- predict_response(mod, c("wool", "tension"))
em <- em[order(em$wool), ]
expect_equal(out$predicted, em$response, tolerance = 1e-3)
expect_equal(out$conf.low, em$lower.CL, tolerance = 1e-3)
})
test_that("ggpredict, Gaussian with invers-link", {
data(warpbreaks)
mod <- glm(breaks ~ wool * tension, family = gaussian("inverse"), data = warpbreaks)
em <- as.data.frame(suppressMessages(emmeans::emmeans(mod, c("wool", "tension"), type = "response")))
out <- predict_response(mod, c("wool", "tension"))
em <- em[order(em$wool), ]
expect_equal(out$predicted, em$response, tolerance = 1e-3)
expect_equal(out$conf.low, em$lower.CL, tolerance = 1e-3)
out <- predict_response(mod, c("wool", "tension"), margin = "marginalmeans")
expect_equal(out$predicted, em$response, tolerance = 1e-3)
expect_equal(out$conf.low, em$lower.CL, tolerance = 1e-3)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.