Brings SummarizedExperiment to the tidyverse!
website: stemangiola.github.io/tidySummarizedExperiment/
Please also have a look at
library(knitr) knitr::opts_chunk$set(warning=FALSE, message=FALSE)
tidySummarizedExperiment provides a bridge between Bioconductor SummarizedExperiment [@morgan2020summarized] and the tidyverse [@wickham2019welcome]. It creates an invisible layer that enables viewing the Bioconductor SummarizedExperiment object as a tidyverse tibble, and provides SummarizedExperiment-compatible dplyr, tidyr, ggplot and plotly functions. This allows users to get the best of both Bioconductor and tidyverse worlds.
SummarizedExperiment-compatible Functions | Description
------------ | -------------
all
| After all tidySummarizedExperiment
is a SummarizedExperiment object, just better
tidyverse Packages | Description
------------ | -------------
dplyr
| Almost all dplyr
APIs like for any tibble
tidyr
| Almost all tidyr
APIs like for any tibble
ggplot2
| ggplot
like for any tibble
plotly
| plot_ly
like for any tibble
Utilities | Description
------------ | -------------
as_tibble
| Convert cell-wise information to a tbl_df
if (!requireNamespace("BiocManager", quietly=TRUE)) { install.packages("BiocManager") } BiocManager::install("tidySummarizedExperiment")
From Github (development)
devtools::install_github("stemangiola/tidySummarizedExperiment")
Load libraries used in the examples.
library(ggplot2) library(tidySummarizedExperiment)
tidySummarizedExperiment
, the best of both worlds!This is a SummarizedExperiment object but it is evaluated as a tibble. So it is fully compatible both with SummarizedExperiment and tidyverse APIs.
pasilla_tidy <- tidySummarizedExperiment::pasilla
It looks like a tibble
pasilla_tidy
But it is a SummarizedExperiment object after all
assays(pasilla_tidy)
We can use tidyverse commands to explore the tidy SummarizedExperiment object.
We can use slice
to choose rows by position, for example to choose the first row.
pasilla_tidy %>% slice(1)
We can use filter
to choose rows by criteria.
pasilla_tidy %>% filter(condition == "untreated")
We can use select
to choose columns.
pasilla_tidy %>% select(.sample)
We can use count
to count how many rows we have for each sample.
pasilla_tidy %>% count(.sample)
We can use distinct
to see what distinct sample information we have.
pasilla_tidy %>% distinct(.sample, condition, type)
We could use rename
to rename a column. For example, to modify the type column name.
pasilla_tidy %>% rename(sequencing=type)
We could use mutate
to create a column. For example, we could create a new type column that contains single
and paired instead of single_end and paired_end.
pasilla_tidy %>% mutate(type=gsub("_end", "", type))
We could use unite
to combine multiple columns into a single column.
pasilla_tidy %>% unite("group", c(condition, type))
We can also combine commands with the tidyverse pipe %>%
.
For example, we could combine group_by
and summarise
to get the total counts for each sample.
pasilla_tidy %>% group_by(.sample) %>% summarise(total_counts=sum(counts))
We could combine group_by
, mutate
and filter
to get the transcripts with mean count > 0.
pasilla_tidy %>% group_by(.feature) %>% mutate(mean_count=mean(counts)) %>% filter(mean_count > 0)
my_theme <- list( scale_fill_brewer(palette="Set1"), scale_color_brewer(palette="Set1"), theme_bw() + theme( panel.border=element_blank(), axis.line=element_line(), panel.grid.major=element_line(size=0.2), panel.grid.minor=element_line(size=0.1), text=element_text(size=12), legend.position="bottom", aspect.ratio=1, strip.background=element_blank(), axis.title.x=element_text(margin=margin(t=10, r=10, b=10, l=10)), axis.title.y=element_text(margin=margin(t=10, r=10, b=10, l=10)) ) )
We can treat pasilla_tidy
as a normal tibble for plotting.
Here we plot the distribution of counts per sample.
pasilla_tidy %>% ggplot(aes(counts + 1, group=.sample, color=`type`)) + geom_density() + scale_x_log10() + my_theme
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.