test_gene_rank | R Documentation |
test_gene_rank() takes as input a 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a 'tbl' with the GSEA statistics
test_gene_rank(
.data,
.entrez,
.arrange_desc,
species,
.sample = NULL,
gene_sets = NULL,
gene_set = NULL
)
## S4 method for signature 'spec_tbl_df'
test_gene_rank(
.data,
.entrez,
.arrange_desc,
species,
.sample = NULL,
gene_sets = c("h", "c1", "c2", "c3", "c4", "c5", "c6", "c7"),
gene_set = NULL
)
## S4 method for signature 'tbl_df'
test_gene_rank(
.data,
.entrez,
.arrange_desc,
species,
.sample = NULL,
gene_sets = c("h", "c1", "c2", "c3", "c4", "c5", "c6", "c7"),
gene_set = NULL
)
## S4 method for signature 'tidybulk'
test_gene_rank(
.data,
.entrez,
.arrange_desc,
species,
.sample = NULL,
gene_sets = c("h", "c1", "c2", "c3", "c4", "c5", "c6", "c7"),
gene_set = NULL
)
## S4 method for signature 'SummarizedExperiment'
test_gene_rank(
.data,
.entrez,
.arrange_desc,
species,
.sample = NULL,
gene_sets = NULL,
gene_set = NULL
)
## S4 method for signature 'RangedSummarizedExperiment'
test_gene_rank(
.data,
.entrez,
.arrange_desc,
species,
.sample = NULL,
gene_sets = NULL,
gene_set = NULL
)
.data |
A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) |
.entrez |
The ENTREZ ID of the transcripts/genes |
.arrange_desc |
A column name of the column to arrange in decreasing order |
species |
A character. For example, human or mouse. MSigDB uses the latin species names (e.g., \"Mus musculus\", \"Homo sapiens\") |
.sample |
The name of the sample column |
gene_sets |
A character vector or a list. It can take one or more of the following built-in collections as a character vector: c("h", "c1", "c2", "c3", "c4", "c5", "c6", "c7", "kegg_disease", "kegg_metabolism", "kegg_signaling"), to be used with EGSEA buildIdx. c1 is human specific. Alternatively, a list of user-supplied gene sets can be provided, to be used with EGSEA buildCustomIdx. In that case, each gene set is a character vector of Entrez IDs and the names of the list are the gene set names. |
gene_set |
DEPRECATED. Use gene_sets instead. |
maturing
This wrapper execute gene enrichment analyses of the dataset using a list of transcripts and GSEA. This wrapper uses clusterProfiler (DOI: doi.org/10.1089/omi.2011.0118) on the back-end.
Undelying method: # Get gene sets signatures msigdbr::msigdbr(species = species)
# Filter specific gene_sets if specified. This was introduced to speed up examples executionS when( !is.null(gene_sets ) ~ filter(., gs_cat ~ (.) ) |>
# Execute calculation nest(data = -gs_cat) |> mutate(fit = map( data, ~ clusterProfiler::GSEA( my_entrez_rank, TERM2GENE=.x |> select(gs_name, entrez_gene), pvalueCutoff = 1 )
))
A consistent object (to the input)
A 'spec_tbl_df' object
A 'tbl_df' object
A 'tidybulk' object
A 'SummarizedExperiment' object
A 'RangedSummarizedExperiment' object
print("Not run for build time.")
## Not run:
df_entrez = tidybulk::se_mini
df_entrez = mutate(df_entrez, do_test = .feature %in% c("TNFRSF4", "PLCH2", "PADI4", "PAX7"))
df_entrez = df_entrez |> test_differential_abundance(~ condition)
test_gene_rank(
df_entrez,
.sample = .sample,
.entrez = entrez,
species="Homo sapiens",
gene_sets =c("C2"),
.arrange_desc = logFC
)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.