knitr::opts_chunk$set( fig.path = "man/figures/")
The input data set is a tidy representation of a differential gene transcript abundance analysis
library(dplyr) library(ggplot2) library(ppcseq) library(dplyr) library(magrittr)
To install:
Before install, for linux systems, in order to exploit multi-threading, from R write (without changing anything of the code):
dir.create(file.path("~/", ".R"), showWarnings = FALSE) fileConn<-file("~/.R/Makevars") writeLines(c( "CXX14FLAGS += -O3","CXX14FLAGS += -DSTAN_THREADS", "CXX14FLAGS += -pthread"), fileConn) close(fileConn)
Then, install with
devtools::install_github("stemangiola/ppcseq")
You can get the test dataset with
data("counts") counts
You can identify anrtefactual calls from your differential transcribt anundance analysis, due to outliers.
# Import libraries counts.ppc = counts |> mutate(is_significant = FDR < 0.01) |> identify_outliers( formula = ~ Label, .sample = sample, .transcript = symbol, .abundance = value, .significance = PValue, .do_check = is_significant, percent_false_positive_genes = 5 )
The new posterior predictive check has been added to the original data frame
counts.ppc
The new data frame contains plots for each gene
We can visualise the top five differentially transcribed genes
counts.ppc_plots = counts.ppc |> plot_credible_intervals()
counts.ppc_plots |> pull(plot) |> head(2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.