title: "sccomp - Outlier-aware and count-based compositional analysis of single-cell data" output: github_document always_allow_html: true
knitr::opts_chunk$set( fig.path = "man/figures/")
devtools::install_github("stemangiola/ARMET")
library(ARMET) library(dplyr) library(tidyr)
data("test_mixture") data("no_hierarchy_reference") estimates = test_mixture |> convoluted_glm( ~ factor_of_interest, .sample = sample, .transcript = symbol, .abundance = count, reference = no_hierarchy_reference, use_cmdstanr = TRUE ) estimates
ACC = readRDS("/stornext/Bioinf/data/bioinf-data/Papenfuss_lab/projects/mangiola.s/ARMET_dev/dev/armet_ACC_input.rds") prior_survival_time = ACC |> filter(!alive) |> distinct(patient, DSS.time.cr) |> pull(DSS.time.cr) estimates_continuous = ACC |> mutate(DSS.time.cr = scale(sqrt(DSS.time.cr)) |> as.numeric()) |> convoluted_glm( ~ DSS.time.cr, .sample = patient, .transcript = transcript, .abundance = count, reference = no_hierarchy_reference, prior_survival_time = prior_survival_time, transform_time_function = sqrt, use_cmdstanr = TRUE )
ACC = readRDS("/stornext/Bioinf/data/bioinf-data/Papenfuss_lab/projects/mangiola.s/ARMET_dev/dev/armet_ACC_input.rds") prior_survival_time = ACC |> filter(!alive) |> distinct(patient, DSS.time.cr) |> pull(DSS.time.cr) estimates = ACC |> #filter(alive==FALSE) |> nest(data = -patient) %>% sample_n(10) %>% unnest(data) %>% convoluted_glm( ~ censored(DSS.time.cr, alive), .sample = patient, .transcript = transcript, .abundance = count, reference = no_hierarchy_reference, prior_survival_time = prior_survival_time, transform_time_function = sqrt ) ACC |> filter(alive==FALSE) |> nest(data = -patient) %>% sample_n(10) %>% unnest(data) %>% mutate(DSS.time.cr = DSS.time.cr %>% sqrt %>% scale %>% as.numeric) %>% convoluted_glm( ~ DSS.time.cr, .sample = patient, .transcript = transcript, .abundance = count, reference = no_hierarchy_reference, prior_survival_time = prior_survival_time, transform_time_function = sqrt ) armet_obj = ACC |> setup_convolved_lm( ~ censored(time, alive), .sample = patient, .transcript = transcript, .abundance = count, prior_survival_time = prior_survival_time, transform_time_function = sqrt ) armet_hypothesis_test = armet_estimate |> test_hypothesis_convoluted_lm()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.