## ---- eval=FALSE---------------------------------------------------------
# #A typical multi peptide and multi metric system suitability dataset
# #This dataset was generated during CPTAC Study 9.1 at Site 54
# S9Site54 <- read.csv('Sampledata_CPTAC_Study_9_1_Site54.csv', header=TRUE)
## ---- eval=FALSE---------------------------------------------------------
# #A general MSstatsQC plot function when a guide set (1-20 runs) is used to monitor the mean of a metric
# APlotFunction( S9Site54, peptide, L = 1, U = 5, metric, normalization = FALSE,
# ytitle = "A Plot", type = "mean", selectMean = NULL, selectSD = NULL )
## ---- eval=FALSE---------------------------------------------------------
# #A general MSstatsQC summary function when a guide set (1-5 runs) is used
# ASummaryFunction( S9Site54, L = 1, U = 5, listMean = NULL, listSD = NULL )
## ---- eval=FALSE---------------------------------------------------------
# #Saving plots generated by plotly
# p<-APlotFunction(S9Site54, peptide="a peptide", metric="a metric")
# htmlwidgets::saveWidget(p, "Aplot.html")
# export(p, file = "Aplot.png")
#
# #Saving plots generated by ggplot2
# p<-ASummaryFunction(S9Site54, L=1, U=5)
# ggsave(filename="Summary.pdf", plot=p)
# #or
# ggsave(filename="Summary.png", plot=p)
## ---- eval=FALSE---------------------------------------------------------
# DataProcess(S9Site54)
## ---- eval=FALSE---------------------------------------------------------
# #Defining metric of interest within APlotFunction
# APlotFunction(S9Site54, "LVNELTEFAK", metric = "TotalArea")
# APlotFunction(S9Site54, "LVNELTEFAK", metric = "RetentionTime")
## ---- eval=FALSE---------------------------------------------------------
# #Mean and standard deviation of LVNELTEFAK is known
# APlotFunction(data, "LVNELTEFAK", metric = "RetentionTime", selectMean = 34.5, selectSD = 1 )
## ---- eval=FALSE---------------------------------------------------------
# # Retention time >> mean is 34.5 and standard deviation is 1.0
# # Peak assymetry >> mean is 1.0 and standard deviation is 0.01
# ASummaryFunction(data, listMean=list("Retention time” = 34.5, “Peak asymmetry” = 1.0), listSD = list("Retention time” = 1, “Peak asymmetry” = 0.01))
## ---- eval=FALSE---------------------------------------------------------
# #Guide set is chosen as the first 20 observations of dataset
# APlotFunction(data, "peptide", metric = "QC metric", L=1, U=20)
## ---- eval=FALSE---------------------------------------------------------
# #Guide set is chosen as the first 20 observations of dataset
# ASummaryFunction(data, L=1, U=20)
## ---- eval=FALSE---------------------------------------------------------
# # Retention time >> mean is 34.5 and standard deviation is 1.0
# XmRPlots(S9Site54, "LVNELTEFAK", metric = "RetentionTime", type="mean", selectMean = 34.5, selectSD = 1)
## ---- eval=FALSE---------------------------------------------------------
# # Retention time >> first 20 observations are used as a guide set
# XmRPlots(S9Site54, "LVNELTEFAK", metric = "RetentionTime", type="mean", L = 1, U = 20)
# XmRPlots(S9Site54, "LVNELTEFAK", metric = "TotalPeakArea", type="mean", L = 1, U = 20)
## ---- eval=FALSE---------------------------------------------------------
# # Retention time >> first 20 observations are used as a guide set
# XmRPlots(S9Site54, "LVNELTEFAK", metric = "RetentionTime", type="dispersion", L = 1, U = 20)
# XmRPlots(S9Site54, "LVNELTEFAK", metric = "TotalPeakArea", type="dispersion", L = 1, U = 20)
## ---- eval=FALSE---------------------------------------------------------
# # Retention time >> first 20 observations are used as a guide set
# CUSUMPlots(S9Site54, "LVNELTEFAK", metric = "RetentionTime", type="mean", L=1, U=20, ytitle="CUSUMm")
# CUSUMPlots(S9Site54, "LVNELTEFAK", metric = "TotalPeakArea", type="mean", L=1, U=20, ytitle="CUSUMm")
# CUSUMPlots(S9Site54, "LVNELTEFAK", metric = "RetentionTime", type="dispersion", L=1, U=20, ytitle="CUSUMv")
# CUSUMPlots(S9Site54, "LVNELTEFAK", metric = "TotalPeakArea", type="dispersion", L=1, U=20, ytitle="CUSUMv")
## ---- eval=FALSE---------------------------------------------------------
# # Retention time >> first 20 observations are used as a guide set
# XmRPlots(S9Site54, "TAAYVNAIEK", metric = "RetentionTime", type="mean", L = 1, U = 20)
# ChangePointEstimator(S9Site54, "TAAYVNAIEK", metric = "RetentionTime", type="mean", L = 1, U = 20)
## ---- eval=FALSE---------------------------------------------------------
# # Retention time >> first 20 observations are used as a guide set
# XmRPlots(S9Site54, "YSTDVSVDEVK", metric = "RetentionTime", type="mean", L = 1, U = 20)
# ChangePointEstimator(S9Site54, "YSTDVSVDEVK", metric = "RetentionTime", type="dispersion", L = 1, U = 20)
## ---- eval=FALSE---------------------------------------------------------
# # Retention time >> first 20 observations are used as a guide set
# XmRRiverPlots(S9Site54, L=1, U=20)
# XmRRadarPlots(S9Site54, L=1, U=20)
## ---- eval=FALSE---------------------------------------------------------
# # Retention time >> first 20 observations are used as a guide set
# CUSUMRiverPlots(S9Site54, L=1, U=20)
# CUSUMRadarPlots(S9Site54, L=1, U=20)
## ---- eval=FALSE---------------------------------------------------------
# # A decision map for Site 54 can be generated using the following script
# # Retention time >> first 20 observations are used as a guide set
# DecisionMap(S9Site54,method="XmR",peptideThresholdRed = 0.25,peptideThresholdYellow = 0.10,
# L = 1,U = 20,type = "mean",title = "Decision map",listMean = NULL,listSD = NULL)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.