# ---------- Dataset definitions ----------
#' @title Data-sets
#'
#' @description Simple data-sets included in the package
#'
#' @name Datasets
#'
NULL
# Raw sample dataset
#' @details `raw.dataset` is a sub-sample of a real *scRNA-seq* data-set
#'
#' @format `raw.dataset` is a data frame with \eqn{2000} genes and \eqn{815}
#' cells
#'
#' @docType data
#'
#' @usage data(raw.dataset)
#'
#' @source GEO GSM2861514
#'
#' @rdname Datasets
#'
"raw.dataset"
# Raw ERCC dataset
#' @details `ERCCRaw` dataset
#'
#' @format `ERCCRaw` is a `data.frame`
#'
#' @docType data
#'
#' @usage data(ERCCraw)
#'
#' @source ERCC
#'
#' @rdname Datasets
#'
"ERCCraw"
#' @details `test.dataset` is an artificial data set obtained by sampling target
#' negative binomial distributions on a set of \eqn{600} genes on \eqn{2} two
#' cells *clusters* of \eqn{600} cells each. Each *clusters* has its own set
#' of parameters for the distributions even, but a fraction of the genes has
#' the same expression in both *clusters*.
#'
#' @format `test.dataset` is a `data.frame` with \eqn{600} genes and \eqn{1200}
#' cells
#'
#' @docType data
#'
#' @usage data(test.dataset)
#'
#' @rdname Datasets
#'
"test.dataset"
#' @details `test.dataset.clusters1` is the *clusterization* obtained running
#' `cellsUniformClustering()` on the `test.dataset`
#'
#' @format `test.dataset.clusters1` is a `character array`
#'
#' @docType data
#'
#' @usage data(test.dataset.clusters1)
#'
#' @rdname Datasets
#'
"test.dataset.clusters1"
#' @details `test.dataset.clusters2` is the *clusterization* obtained running
#' `mergeUniformCellsClusters()` on the `test.dataset` using the previous
#' *clusterization*
#'
#' @format `test.dataset.clusters2` is a `character array`
#'
#' @docType data
#'
#' @usage data(test.dataset.clusters2)
#'
#' @rdname Datasets
#'
"test.dataset.clusters2"
#' @details `vignette.split.clusters` is the clusterization obtained running
#' `cellsUniformClustering()` on the vignette dataset (mouse cortex E17.5,
#' GEO: GSM2861514)
#'
#' @format `vignette.split.clusters` is a `factor`
#'
#' @docType data
#'
#' @usage data(vignette.split.clusters)
#'
#' @rdname Datasets
#'
"vignette.split.clusters"
#' @details `vignette.merge.clusters` is the clusterization obtained running
#' `mergeUniformCellsClusters()` on the vignette dataset (mouse cortex E17.5,
#' GEO: GSM2861514) using the previous *clusterization*
#'
#' @format `vignette.merge.clusters` is a `factor`
#'
#' @docType data
#'
#' @usage data(vignette.merge.clusters)
#'
#' @rdname Datasets
#'
"vignette.merge.clusters"
#' @details `vignette.merge2.clusters` is the clusterization obtained re-running
#' `mergeUniformCellsClusters()` on the vignette dataset (mouse cortex E17.5,
#' GEO: GSM2861514) using the `vignette.split.clusters` *clusterization*, but
#' with a sequence of progressively relaxed checks
#'
#' @format `vignette.merge2.clusters` is a `factor`
#'
#' @docType data
#'
#' @usage data(vignette.merge2.clusters)
#'
#' @rdname Datasets
#'
"vignette.merge2.clusters"
# ---------- Torch library section ----------
#' @title Installing torch R library (on Linux)
#'
#' @description A brief explanation of how to install the torch package on
#' `WSL2` (Windows Subsystem for Linux), but it might work the same for other
#' `Linux` systems. Naturally it makes a difference whether one wants to
#' install support only for the `CPU` or also have the system `GPU` at the
#' ready!
#'
#' @description The main resources to install `torch` is
#' \url{https://torch.mlverse.org/docs/articles/installation.html} or
#' \url{https://cran.r-project.org/web/packages/torch/vignettes/installation.html}
#'
#' @details For the `CPU`-only support one need to ensure that also numeric
#' libraries are installed, like `BLAS` and `LAPACK` and/or `MKL` if your
#' `CPU` is from *Intel*. Otherwise `torch` will be stuck at using a single
#' core for all computations.
#'
#' @details For the `GPU`, currently only `cuda` devices are supported. Moreover
#' only some specific versions of `cuda` (and corresponding `cudnn`) are
#' effectively usable, so one needs to install them to actually use the `GPU`.
#'
#' As of today only `cuda` 11.7 and 11.8 are supported, but check the `torch`
#' documentation for more up-to-date information. Before downgrading your
#' `cuda` version, please be aware that it is possible to maintain separate
#' main versions of `cuda` at the same time on the system: that is one can
#' have installed both 11.8 and a 12.4 `cuda` versions on the same system.
#'
#' Below a link to install `cuda` 11.8 for `WSL2` given: use a local installer
#' to be sure the wanted `cuda` version is being installed, and not the latest
#' one: [cuda 11.8 for
#' WSL2](https://developer.nvidia.com/cuda-11-8-0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=WSL-Ubuntu&target_version=2.0&target_type=deb_local)
#'
#' @name Installing_torch
#'
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.