knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
Install R package 'TGS'.
## The 'type' argument is needed to be ## set to 'source'. Otherwise, in ## Windows and macOS, 'binary' of ## an older version of the package ## may get installed. ## For further details, please see ## the 'Binary packages' section ## of 'install.packages()' documentation ## in package 'utils' version 3.5.1. install.packages('TGS', type = 'source')
Attach R package 'TGS'.
library(TGS)
Let us assume that you have a time-series gene expression data. It is comprised of multiple time series. Each time series contains the expressions of $10$ genes across $21$ time points. The data is saved in a file named 'input_data_10.tsv'. The file is saved inside directory '/home/saptarshi/datasets/'.
First, assign absolute path to the input directory.
## Assign absolute path to the input directory. input_dir <- '/home/saptarshi/datasets'
Then reconstruct time-varying gene regulatory networks (GRNs) using algorithm 'TGS'.
## Assign the name of the desired output directory. ## The output directory will be created automatically. output_dir <- '/home/saptarshi/My_TGS_output' ## Run algorithm 'TGS'. ## It is assumed that your data is continuous. ## In case, your data is discrete, simply ## make the following changes: ## (a) is.discrete = TRUE, ## (b) num.discr.levels = <number of discrete ## levels each gene has>, ## (c) discr.algo = ''. ## TGS::LearnTgs( isfile = 0, json.file = '', input.dirname = input_dir, input.data.filename = 'input_data_10.tsv', num.timepts = 21, true.net.filename = '', input.wt.data.filename = '', is.discrete = FALSE, num.discr.levels = 2, discr.algo = 'discretizeData.2L.Tesla', mi.estimator = 'mi.pca.cmi', apply.aracne = FALSE, clr.algo = 'CLR', max.fanin = 14, allow.self.loop = TRUE, scoring.func = 'BIC', output.dirname = output_dir )
You may also reconstruct time-varying GRNs
using algorithm 'TGS+'. The only difference is that the input
argument apply.aracne
is set to TRUE
.
## Assign the name of the desired output directory. ## The output directory will be created automatically. output_dir <- '/home/saptarshi/My_TGS_plus_output' ## Run algorithm 'TGS' TGS::LearnTgs( isfile = 0, json.file = '', input.dirname = input_dir, input.data.filename = 'input_data_10.tsv', num.timepts = 21, true.net.filename = '', input.wt.data.filename = '', is.discrete = FALSE, num.discr.levels = 2, discr.algo = 'discretizeData.2L.Tesla', mi.estimator = 'mi.pca.cmi', apply.aracne = TRUE, clr.algo = 'CLR', max.fanin = 14, allow.self.loop = TRUE, scoring.func = 'BIC', output.dirname = output_dir )
Once the reconstruction is complete, please go to the output directory. There should be a file named 'unrolled.DBN.adj.matrix.list.RData'. This file contains the reconstructed time-varying GRNs. Load this file in an R session.
## Loads a list named 'unrolled.DBN.adj.matrix.list' load('unrolled.DBN.adj.matrix.list.RData')
Print the reconstructed GRN of the $7^{th}$ time interval.
print(unrolled.DBN.adj.matrix.list[[7]])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.