Run this.
library(Seurat) library(cerebroApp) pbmc_counts <- read.table( file = system.file('extdata', 'pbmc_raw.txt', package = 'Seurat'), as.is = TRUE ) pbmc <- CreateSeuratObject(counts = pbmc_counts) sample_info <- rep(NA, nrow(pbmc@meta.data)) sample_info[1:ceiling(length(sample_info)/2)] <- 'pbmc_1' sample_info[ceiling(length(sample_info)/2):length(sample_info)] <- 'pbmc_2' sample_info <- factor(sample_info, levels = c('pbmc_1','pbmc_2')) pbmc@meta.data$sample <- sample_info pbmc <- NormalizeData(object = pbmc) pbmc <- FindVariableFeatures(object = pbmc) pbmc <- ScaleData(object = pbmc) pbmc <- RunPCA(object = pbmc) pbmc <- FindNeighbors(object = pbmc) pbmc <- FindClusters(object = pbmc) pbmc <- RunUMAP( pbmc, reduction.name = 'UMAP', reduction.key = 'UMAP_', dims = 1:30, n.components = 2, seed.use = 100, verbose = FALSE ) pbmc <- getMarkerGenes( pbmc, organism = 'hg', groups = c('sample','seurat_clusters') ) saveRDS(pbmc, '~/Research/GitHub/cerebroApp_v1.3/inst/extdata/v1.3/pbmc_seurat.rds')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.