open
and closed
NA
values in grouping variablespbmc_Seurat_copy <- pbmc_Seurat pbmc_Seurat_copy@meta.data$sample[sample(seq(nrow(pbmc_Seurat_copy@meta.data)), 1000, replace = FALSE)] <- NA exportFromSeurat( pbmc_Seurat_copy, assay = 'SCT', slot = 'data', file = '~/Dropbox/Cerebro_development/pbmc_Seurat.crb', experiment_name = 'pbmc_Seurat', organism = 'hg', groups = c('sample','seurat_clusters','cell_type_singler_blueprintencode_main'), nUMI = 'nCount_RNA', nGene = 'nFeature_RNA', add_all_meta_data = TRUE, verbose = TRUE )
pbmc_Seurat_copy <- pbmc_Seurat pbmc_Seurat_copy@misc$experiment <- list() exportFromSeurat( pbmc_Seurat_copy, assay = 'SCT', slot = 'data', file = '~/Dropbox/Cerebro_development/pbmc_Seurat.crb', experiment_name = 'pbmc_Seurat', organism = 'hg', groups = c('sample','seurat_clusters','cell_type_singler_blueprintencode_main'), nUMI = 'nCount_RNA', nGene = 'nFeature_RNA', add_all_meta_data = TRUE, verbose = FALSE )
exportFromSeurat( pbmc_Seurat, assay = 'SCT', slot = 'data', file = '~/Dropbox/Cerebro_development/pbmc_Seurat.crb', experiment_name = 'pbmc_Seurat', organism = 'hg', groups = c('sample','seurat_clusters','cell_type_singler_blueprintencode_main'), nUMI = 'nCount_RNA', nGene = 'nFeature_RNA', add_all_meta_data = TRUE, verbose = FALSE )
pbmc_Seurat_copy <- pbmc_Seurat pbmc_Seurat_copy@misc$trees <- list() exportFromSeurat( pbmc_Seurat_copy, assay = 'SCT', slot = 'data', file = '~/Dropbox/Cerebro_development/pbmc_Seurat.crb', experiment_name = 'pbmc_Seurat', organism = 'hg', groups = c('sample','seurat_clusters','cell_type_singler_blueprintencode_main'), nUMI = 'nCount_RNA', nGene = 'nFeature_RNA', add_all_meta_data = TRUE, verbose = FALSE )
pbmc_Seurat_copy <- pbmc_Seurat pbmc_Seurat_copy@misc$most_expressed_genes <- NULL exportFromSeurat( pbmc_Seurat_copy, assay = 'SCT', slot = 'data', file = '~/Dropbox/Cerebro_development/pbmc_Seurat.crb', experiment_name = 'pbmc_Seurat', organism = 'hg', groups = c('sample','seurat_clusters','cell_type_singler_blueprintencode_main'), cell_cycle = c('cell_cycle_seurat'), nUMI = 'nCount_RNA', nGene = 'nFeature_RNA', add_all_meta_data = TRUE, verbose = FALSE )
pbmc_Seurat_copy <- pbmc_Seurat pbmc_Seurat_copy@misc$marker_genes <- NULL exportFromSeurat( pbmc_Seurat_copy, assay = 'SCT', slot = 'data', file = '~/Dropbox/Cerebro_development/pbmc_Seurat.crb', experiment_name = 'pbmc_Seurat', organism = 'hg', groups = c('sample','seurat_clusters','cell_type_singler_blueprintencode_main'), cell_cycle = c('cell_cycle_seurat'), nUMI = 'nCount_RNA', nGene = 'nFeature_RNA', add_all_meta_data = TRUE, verbose = FALSE )
pbmc_Seurat_copy <- pbmc_Seurat pbmc_Seurat_copy@misc$marker_genes$cerebro_seurat$sample <- "no_markers_found" exportFromSeurat( pbmc_Seurat_copy, assay = 'SCT', slot = 'data', file = '~/Dropbox/Cerebro_development/pbmc_Seurat.crb', experiment_name = 'pbmc_Seurat', organism = 'hg', groups = c('sample','seurat_clusters','cell_type_singler_blueprintencode_main'), cell_cycle = c('cell_cycle_seurat'), nUMI = 'nCount_RNA', nGene = 'nFeature_RNA', add_all_meta_data = TRUE, verbose = FALSE )
pbmc_Seurat_copy <- pbmc_Seurat pbmc_Seurat_copy@misc$marker_genes$test <- list( "test1" = tibble( a = "this", b = "is", c = "a", d = "test" ) ) exportFromSeurat( pbmc_Seurat_copy, assay = 'SCT', slot = 'data', file = '~/Dropbox/Cerebro_development/pbmc_Seurat.crb', experiment_name = 'pbmc_Seurat', organism = 'hg', groups = c('sample','seurat_clusters','cell_type_singler_blueprintencode_main'), cell_cycle = c('cell_cycle_seurat'), nUMI = 'nCount_RNA', nGene = 'nFeature_RNA', add_all_meta_data = TRUE, verbose = FALSE ) # class: Cerebro_v1.3 # cerebroApp version: 1.3.0 # experiment name: pbmc_Seurat # organism: hg # date of analysis: 2020-02-19 # date of export: 2020-08-30 # number of cells: 5,697 # number of genes: 15,907 # grouping variables (3): sample, seurat_clusters, cell_type_singler_blueprintencode_main # cell cycle variables (1): cell_cycle_seurat # projections (2): UMAP, UMAP_3D # trees (3): sample, seurat_clusters, cell_type_singler_blueprintencode_main # most expressed genes: sample, seurat_clusters, cell_type_singler_blueprintencode_main # marker genes: # - cerebro_seurat (3): sample, seurat_clusters, cell_type_singler_blueprintencode_main, # - test (1): test1 # enriched pathways: # - cerebro_seurat_enrichr (3): sample, seurat_clusters, cell_type_singler_blueprintencode_main, # - cerebro_GSVA (3): sample, seurat_clusters, cell_type_singler_blueprintencode_main, # trajectories: # - monocle2 (1): highly_variable_genes
pbmc_Seurat_copy <- pbmc_Seurat pbmc_Seurat_copy@misc$enriched_pathways <- NULL exportFromSeurat( pbmc_Seurat_copy, assay = 'SCT', slot = 'data', file = '~/Dropbox/Cerebro_development/pbmc_Seurat.crb', experiment_name = 'pbmc_Seurat', organism = 'hg', groups = c('sample','seurat_clusters','cell_type_singler_blueprintencode_main'), cell_cycle = c('cell_cycle_seurat'), nUMI = 'nCount_RNA', nGene = 'nFeature_RNA', add_all_meta_data = TRUE, verbose = FALSE )
pbmc_Seurat_copy <- pbmc_Seurat pbmc_Seurat_copy@misc$enriched_pathways$cerebro_seurat_enrichr$sample <- "no_markers_found" pbmc_Seurat_copy@misc$enriched_pathways$cerebro_seurat_enrichr_2 <- list( sample = "no_pathways_found" ) exportFromSeurat( pbmc_Seurat_copy, assay = 'SCT', slot = 'data', file = '~/Dropbox/Cerebro_development/pbmc_Seurat.crb', experiment_name = 'pbmc_Seurat', organism = 'hg', groups = c('sample','seurat_clusters','cell_type_singler_blueprintencode_main'), cell_cycle = c('cell_cycle_seurat'), nUMI = 'nCount_RNA', nGene = 'nFeature_RNA', add_all_meta_data = TRUE, verbose = FALSE )
pbmc_Seurat_copy <- pbmc_Seurat pbmc_Seurat_copy@misc$enriched_pathways$cerebro_GSVA$sample <- "no_gene_sets_enriched" exportFromSeurat( pbmc_Seurat_copy, assay = 'SCT', slot = 'data', file = '~/Dropbox/Cerebro_development/pbmc_Seurat.crb', experiment_name = 'pbmc_Seurat', organism = 'hg', groups = c('sample','seurat_clusters','cell_type_singler_blueprintencode_main'), cell_cycle = c('cell_cycle_seurat'), nUMI = 'nCount_RNA', nGene = 'nFeature_RNA', add_all_meta_data = TRUE, verbose = FALSE )
pbmc_Seurat_copy <- pbmc_Seurat pbmc_Seurat_copy@misc$enriched_pathways$test <- list( "test2" = tibble( a = "this", b = "is", c = "a", d = "test" ) ) exportFromSeurat( pbmc_Seurat_copy, assay = 'SCT', slot = 'data', file = '~/Dropbox/Cerebro_development/pbmc_Seurat.crb', experiment_name = 'pbmc_Seurat', organism = 'hg', groups = c('sample','seurat_clusters','cell_type_singler_blueprintencode_main'), cell_cycle = c('cell_cycle_seurat'), nUMI = 'nCount_RNA', nGene = 'nFeature_RNA', add_all_meta_data = TRUE, verbose = FALSE ) # class: Cerebro_v1.3 # cerebroApp version: 1.3.0 # experiment name: pbmc_Seurat # organism: hg # date of analysis: 2020-02-19 # date of export: 2020-08-30 # number of cells: 5,697 # number of genes: 15,907 # grouping variables (3): sample, seurat_clusters, cell_type_singler_blueprintencode_main # cell cycle variables (1): cell_cycle_seurat # projections (2): UMAP, UMAP_3D # trees (3): sample, seurat_clusters, cell_type_singler_blueprintencode_main # most expressed genes: sample, seurat_clusters, cell_type_singler_blueprintencode_main # marker genes: # - cerebro_seurat (3): sample, seurat_clusters, cell_type_singler_blueprintencode_main, # enriched pathways: # - cerebro_seurat_enrichr (3): sample, seurat_clusters, cell_type_singler_blueprintencode_main, # - cerebro_GSVA (3): sample, seurat_clusters, cell_type_singler_blueprintencode_main, # - test (1): test2 # trajectories: # - monocle2 (1): highly_variable_genes
pbmc_Seurat_copy <- pbmc_Seurat pbmc_Seurat_copy@misc$trajectories <- NULL exportFromSeurat( pbmc_Seurat_copy, assay = 'SCT', slot = 'data', file = '~/Dropbox/Cerebro_development/pbmc_Seurat.crb', experiment_name = 'pbmc_Seurat', organism = 'hg', groups = c('sample','seurat_clusters','cell_type_singler_blueprintencode_main'), cell_cycle = c('cell_cycle_seurat'), nUMI = 'nCount_RNA', nGene = 'nFeature_RNA', add_all_meta_data = TRUE, verbose = FALSE )
pbmc_Seurat_copy <- pbmc_Seurat custom_table <- tibble( a = "this", b = "is", c = "a", d = "test" ) pbmc_Seurat_copy@misc$extra_material$tables <- list( "test" = custom_table ) exportFromSeurat( pbmc_Seurat_copy, assay = 'SCT', slot = 'data', file = '~/Dropbox/Cerebro_development/pbmc_Seurat.crb', experiment_name = 'pbmc_Seurat', organism = 'hg', groups = c('sample','seurat_clusters','cell_type_singler_blueprintencode_main'), cell_cycle = c('cell_cycle_seurat'), nUMI = 'nCount_RNA', nGene = 'nFeature_RNA', add_all_meta_data = TRUE, verbose = FALSE )
library(ggplot2) pbmc_Seurat_copy <- pbmc_Seurat custom_plot <- ggplot(iris, aes(Sepal.Length, Sepal.Width, color = Species)) + geom_point() pbmc_Seurat_copy@misc$extra_material$plots <- list( "iris" = custom_plot ) exportFromSeurat( pbmc_Seurat_copy, assay = 'SCT', slot = 'data', file = '~/Dropbox/Cerebro_development/pbmc_Seurat_dgCMatrix.crb', experiment_name = 'pbmc_Seurat', organism = 'hg', groups = c('sample','seurat_clusters','cell_type_singler_blueprintencode_main'), cell_cycle = c('cell_cycle_seurat'), nUMI = 'nCount_RNA', nGene = 'nFeature_RNA', add_all_meta_data = TRUE, verbose = FALSE )
dgCMatrix
cerebro_seurat <- readRDS('~/Dropbox/Cerebro_development/pbmc_Seurat.crb') str(cerebro_seurat$expression) cell_names <- colnames(cerebro_seurat$expression) gene_names <- rownames(cerebro_seurat$expression) cerebro_seurat$expression <- as(cerebro_seurat$expression, 'dgCMatrix') str(cerebro_seurat$expression) colnames(cerebro_seurat$expression) <- cell_names rownames(cerebro_seurat$expression) <- gene_names str(cerebro_seurat$expression) saveRDS(cerebro_seurat, '~/Dropbox/Cerebro_development/pbmc_Seurat.crb')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.