# Environment that holds global variables
global <- new.env()
# Column name to use for storing cell barcodes
global$cell_col <- ".cell_id"
# Default chain column
global$chain_col <- "chains"
# Default clonotype column
global$clonotype_col <- "clonotype_id"
# Default CDR3 column
global$cdr3_col <- "cdr3"
# Default chain separator
global$sep <- ";"
# Base font size for plot labels
global$base_size <- 11
# Default argument classes to use with .check_args()
global$arg_classes <- list(
data_col = list(),
cluster_col = list(allow_null = TRUE),
group_col = list(allow_null = TRUE),
clonotype_col = list(allow_null = TRUE),
chain_col = list(),
downsample = list(Class = "logical"),
n_boots = list(Class = "numeric"),
chain = list(len_one = FALSE, allow_null = TRUE),
prefix = list(allow_null = TRUE),
return_df = list(Class = "logical"),
sep = list(allow_null = TRUE),
plot_colors = list(len_one = FALSE, allow_null = TRUE),
plot_lvls = list(
Class = list(c("character", "factor")), len_one = FALSE, allow_null = TRUE
),
panel_nrow = list(Class = "numeric", allow_null = TRUE),
panel_scales = list(),
n_label = list(len_one = FALSE, allow_null = TRUE),
p_label = list(
Class = list(c("numeric", "character")), len_one = FALSE
),
label_params = list(Class = "list", len_one = FALSE),
units = list(),
trans = list(),
# plot_rarefaction
ci_alpha = list(Class = "numeric"),
# plot_clone_frequency
clones = list(
Class = list(c("numeric", "character")), len_one = FALSE, allow_null = TRUE
),
# plot_frequency
top = list(
Class = list(c("numeric", "character")), len_one = FALSE, allow_null = TRUE
),
other_label = list(),
stack = list(Class = "logical", allow_null = TRUE),
# plot_gene_usage
genes = list(
Class = list(c("numeric", "character")), len_one = FALSE, allow_null = TRUE
),
rotate_labels = list(Class = "logical"),
return_list = list(Class = "logical"),
# calc_similarity
return_mat = list(Class = "logical"),
# plot_similarity
cluster_heatmap = list(Class = "logical"),
remove_upper_triangle = list(Class = "logical"),
remove_diagonal = list(Class = "logical"),
# cluster_sequences
resolution = list(Class = "numeric", len_one = FALSE),
k = list(Class = "numeric"),
dist_method = list(allow_null = TRUE),
run_umap = list(Class = "logical"),
# plot_motifs
width = list(Class = "numeric"),
align_end = list(),
# import_vdj
vdj_dir = list(len_one = FALSE, allow_null = TRUE),
filter_paired = list(Class = "logical"),
define_clonotypes = list(allow_null = TRUE),
include_mutations = list(Class = "logical"),
aggr_dir = list(allow_null = TRUE),
# fetch_vdj
filtrer_cells = list(Class = "logical"),
unnest = list(Class = "logical"),
# summarize_vdj
col_names = list(allow_null = TRUE),
# plot_features
feature = list(allow_null = TRUE),
x = list(),
y = list(),
min_q = list(Class = "numeric", allow_null = TRUE),
max_q = list(Class = "numeric", allow_null = TRUE),
na_color = list(),
data_slot = list(),
# Arguments that vary
data_cols = list(len_one = FALSE),
method = list(),
filter_chains = list(Class = "logical")
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.