knitr::opts_chunk$set( message = FALSE, warning = FALSE, collapse = TRUE, comment = "#>", fig.align = "center" )
ref_tabula_muris_drop
referencelibrary(clustifyr) library(clustifyrdata) l_mat <- clustifyrdata::MCA_lung_mat l_meta <- clustifyrdata::MCA_lung_meta # find lung references, remove generic terms lung_cols <- grep("-Lung", colnames(ref_tabula_muris_drop), value = TRUE) tml_ref <- ref_tabula_muris_drop[, lung_cols] tml_ref <- tml_ref[, -c(8, 13)] # default with all genes start <- proc.time() res <- clustify( input = l_mat, ref_mat = tml_ref, metadata = l_meta, cluster_col = "Annotation" ) res_allgenes <- cor_to_call( cor_mat = res, metadata = l_meta, cluster_col = "Annotation" ) end <- proc.time() names(res_allgenes) <- c("MCA annotation", "clustifyr call", "r") print(end - start) print(res_allgenes, n = nrow(res_allgenes))
clustifyrdata
packagefull_pbmc_matrix <- clustifyrdata::pbmc_matrix full_pbmc_meta <- clustifyrdata::pbmc_meta microarray_ref <- clustifyrdata::ref_hema_microarray start <- proc.time() res <- clustify( input = full_pbmc_matrix, ref_mat = microarray_ref, metadata = full_pbmc_meta, query_genes = pbmc_vargenes[1:500], cluster_col = "classified" ) res2 <- cor_to_call(res, threshold = 0.5) end <- proc.time() names(res2) <- c("manual annotation", "clustifyr call", "r") print(end - start) print(res2, n = nrow(res2))
using Tablua Muris (drop and facs samples) 12 shared tissues, which can be downloaded as seurat
objects
default clustify
, with all genes
clustify
, pulling var.genes
from seurat
objects
clustify
, using M3Drop
for feature selection
clustify
, using per_cell = TRUE
option, and then assign cluster consensus ident with collapse_to_cluster = TRUE
clustify
, after ALRA
imputation, using per_cell = TRUE
option, and then assign cluster consensus ident with collapse_to_cluster = TRUE
scmap-cluster
clustify
, using ref_tabula_muris_facs
singleR
, using default built-in mouse references without fine tuning
default clustify_list
knitr::include_graphics("img/test.png")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.