#' @title Relaxed Value Matching
#'
#' @description
#' These functions offer relaxed matching of one vector in another.
#' In contrast to the similar [`match()`] and [`%in%`] functions they
#' just accept `numeric` arguments but have an additional `tolerance`
#' argument that allows relaxed matching.
#'
#' @param x `numeric`, the values to be matched. In contrast to
#' [`match()`] `x` has to be sorted in increasing order and must not contain any
#' `NA`.
#' @param table `numeric`, the values to be matched against. In contrast to
#' [`match()`] `table` has to be sorted in increasing order and must not contain
#' any `NA`.
#' @param tolerance `numeric`, accepted tolerance. Could be of length one or
#' the same length as `x`.
#' @param ppm `numeric(1)` representing a relative, value-specific
#' parts-per-million (PPM) tolerance that is added to `tolerance`.
#' @param duplicates `character(1)`, how to handle duplicated matches. Has to be
#' one of `c("keep", "closest", "remove")`. No abbreviations allowed.
#' @param nomatch `integer(1)`, if the difference
#' between the value in `x` and `table` is larger than
#' `tolerance` `nomatch` is returned.
#' @param .check `logical(1)` turn off checks for increasingly sorted `x`
#' and `table`. It also disables most other input validation checks.
#' This should just be done if it is ensured by other methods
#' that `x` and `table` are sorted, see details.
#'
#' @details
#' For `closest`/`common` the `tolerance` argument could be set to `0` to get
#' the same results as for [`match()`]/[`%in%`]. If it is set to `Inf` (default)
#' the index of the closest values is returned without any restriction.
#'
#' It is not guaranteed that there is a one-to-one matching for neither the
#' `x` to `table` nor the `table` to `x` matching.
#'
#' If multiple elements in `x` match a single element in `table` all their
#' corresponding indices are returned if `duplicates="keep"` is set (default).
#' This behaviour is identical to [`match()`]. For `duplicates="closest"` just
#' the closest element in `x` gets the corresponding index in `table` and
#' for `duplicates="remove"` all elements in `x` that match to the same element
#' in `table` are set to `nomatch`.
#'
#' If a single element in `x` matches multiple elements in `table` the *closest*
#' is returned for `duplicates="keep"` or `duplicates="closest"` (*keeping*
#' multiple matches isn't possible in this case because the return value should
#' be of the same length as `x`). If the differences between `x` and the
#' corresponding matches in `table` are identical the lower index (the smaller
#' element in `table`) is returned. There is one exception: if the lower index
#' is already returned for another `x` with a smaller difference to this
#' `index` the higher one is returned for `duplicates = "closer"`
#' (but only if there is no other `x` that is closer to the higher one).
#' For `duplicates="remove"` all multiple matches are returned as `nomatch` as
#' above.
#'
#' `.checks = TRUE` tests among other input validation checks for increasingly
#' sorted `x` and `table` arguments that are mandatory assumptions for the
#' `closest` algorithm. These checks require to loop through both vectors and
#' compare each element against its precursor.
#' Depending on the length and distribution of `x` and `table` these checks take
#' equal/more time than the whole `closest` algorithm. If it is ensured by other
#' methods that both arguments `x` and `table` are sorted the tests could be
#' skipped by `.check = FALSE`. In the case that `.check = FALSE` is used
#' and one of `x` and `table` is not sorted (or decreasingly sorted)
#' the output would be incorrect in the best case and result in infinity
#' loop in the average and worst case.
#'
#' @return `closest` returns an `integer` vector of the same length as `x`
#' giving the closest position in `table` of the first match or `nomatch` if
#' there is no match.
#'
#' @rdname matching
#' @author Sebastian Gibb, Johannes Rainer
#' @seealso [`match()`]
#' @aliases closest
#' @family grouping/matching functions
#' @useDynLib MsCoreUtils, .registration = TRUE
#' @export
#' @examples
#' ## Define two vectors to match
#' x <- c(1, 3, 5)
#' y <- 1:10
#'
#' ## Compare match and closest
#' match(x, y)
#' closest(x, y)
#'
#' ## If there is no exact match
#' x <- x + 0.1
#' match(x, y) # no match
#' closest(x, y)
#'
#' ## Some new values
#' x <- c(1.11, 45.02, 556.45)
#' y <- c(3.01, 34.12, 45.021, 46.1, 556.449)
#'
#' ## Using a single tolerance value
#' closest(x, y, tolerance = 0.01)
#'
#' ## Using a value-specific tolerance accepting differences of 20 ppm
#' closest(x, y, ppm = 20)
#'
#' ## Same using 50 ppm
#' closest(x, y, ppm = 50)
#'
#' ## Sometimes multiple elements in `x` match to `table`
#' x <- c(1.6, 1.75, 1.8)
#' y <- 1:2
#' closest(x, y, tolerance = 0.5)
#' closest(x, y, tolerance = 0.5, duplicates = "closest")
#' closest(x, y, tolerance = 0.5, duplicates = "remove")
closest <- function(x, table, tolerance = Inf, ppm = 0,
duplicates = c("keep", "closest", "remove"),
nomatch = NA_integer_, .check = TRUE) {
if (.check) {
ntolerance <- length(tolerance)
if (ntolerance != 1L && ntolerance != length(x))
stop("'tolerance' has to be of length 1 or equal to 'length(x)'")
if (!is.numeric(tolerance) || any(tolerance < 0))
stop("'tolerance' has to be a 'numeric' larger or equal zero.")
if(!is.numeric(ppm) || any(ppm < 0))
stop("'ppm' has to be a 'numeric' larger or equal zero.")
if (!is.numeric(nomatch) || length(nomatch) != 1L)
stop("'nomatch' has to be a 'numeric' of length one.")
if (!identical(FALSE, is.unsorted(x)) ||
!identical(FALSE, is.unsorted(table))) {
stop("'x' and 'table' have to be sorted non-decreasingly and ",
"must not contain NA.")
}
}
if (!length(table))
return(rep_len(nomatch, length(x)))
tolerance <- tolerance + ppm(x, ppm) + sqrt(.Machine$double.eps)
switch(duplicates[1L],
"keep" = .Call(
C_closest_dup_keep,
as.double(x), as.double(table),
as.double(tolerance),
as.integer(nomatch)
),
"closest" = .Call(
C_closest_dup_closest,
as.double(x), as.double(table),
as.double(tolerance),
as.integer(nomatch)
),
"remove" = .Call(
C_closest_dup_remove,
as.double(x), as.double(table),
as.double(tolerance),
as.integer(nomatch)
),
stop("'duplicates' has to be one of \"keep\", \"closest\" ",
"or \"remove\".")
)
}
#' @rdname matching
#'
#' @return `common` returns a `logical` vector of length `x` that is `TRUE` if the
#' element in `x` was found in `table`. It is similar to [`%in%`].
#' @aliases common
#' @seealso [`%in%`]
#' @export
#' @examples
#'
#' ## Are there any common values?
#' x <- c(1.6, 1.75, 1.8)
#' y <- 1:2
#' common(x, y, tolerance = 0.5)
#' common(x, y, tolerance = 0.5, duplicates = "closest")
#' common(x, y, tolerance = 0.5, duplicates = "remove")
common <- function(x, table, tolerance = Inf, ppm = 0,
duplicates = c("keep", "closest", "remove"), .check = TRUE) {
!is.na(closest(x, table, tolerance = tolerance, ppm = ppm,
duplicates = duplicates, .check = .check))
}
#' @rdname matching
#'
#' @details
#' `join`: joins two `numeric` vectors by mapping values in `x` with
#' values in `y` and *vice versa* if they are similar enough (provided the
#' `tolerance` and `ppm` specified). The function returns a `matrix` with the
#' indices of mapped values in `x` and `y`. Parameter `type` allows to define
#' how the vectors will be joined: `type = "left"`: values in `x` will be
#' mapped to values in `y`, elements in `y` not matching any value in `x` will
#' be discarded. `type = "right"`: same as `type = "left"` but for `y`.
#' `type = "outer"`: return matches for all values in `x` and in `y`.
#' `type = "inner"`: report only indices of values that could be mapped.
#'
#' @param y `numeric`, the values to be joined. Should be sorted.
#' @param type `character(1)`, defines how `x` and `y` should be joined. See
#' details for `join`.
#' @param .check `logical(1)` turn off checks for increasingly sorted `x` and
#' `y`. This should just be done if it is ensured by other methods that `x` and
#' `y` are sorted, see also [`closest()`].
#' @param ... ignored.
#'
#' @note `join` is based on `closest(x, y, tolerance, duplicates = "closest")`.
#' That means for multiple matches just the closest one is reported.
#'
#' @return `join` returns a `matrix` with two columns, namely `x` and `y`,
#' representing the index of the values in `x` matching the corresponding value
#' in `y` (or `NA` if the value does not match).
#'
#' @export
#' @examples
#'
#' ## Join two vectors
#' x <- c(1, 2, 3, 6)
#' y <- c(3, 4, 5, 6, 7)
#'
#' jo <- join(x, y, type = "outer")
#' jo
#' x[jo$x]
#' y[jo$y]
#'
#' jl <- join(x, y, type = "left")
#' jl
#' x[jl$x]
#' y[jl$y]
#'
#' jr <- join(x, y, type = "right")
#' jr
#' x[jr$x]
#' y[jr$y]
#'
#' ji <- join(x, y, type = "inner")
#' ji
#' x[ji$x]
#' y[ji$y]
join <- function(x, y, tolerance = 0, ppm = 0,
type = c("outer", "left", "right", "inner"), .check = TRUE,
...) {
if (is.integer(x))
x <- as.numeric(x)
if (is.integer(y))
y <- as.numeric(y)
if (.check && (
!identical(FALSE, is.unsorted(x)) ||
!identical(FALSE, is.unsorted(y)))) {
stop("'x' and 'y' have to be sorted non-decreasingly and must not ",
" contain NA.")
}
tolerance <- tolerance + ppm(x, ppm = ppm) + sqrt(.Machine$double.eps)
switch(type[1L],
"outer" = .Call(C_join_outer, x, y, tolerance, NA_integer_),
"left" = .Call(C_join_left, x, y, tolerance, NA_integer_),
"right" = .Call(C_join_right, x, y, tolerance, NA_integer_),
"inner" = .Call(C_join_inner, x, y, tolerance, NA_integer_),
stop("'type' has to be one of \"outer\", \"left\", \"right\", or ",
"\"inner\"")
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.