#'@title Extract closest values in a pairwise manner between two matrices
#'
#' @description
#'
#' The `mclosest` function calculates the closest rows between two matrices
#' (or data frames) considering pairwise differences between values in columns
#' of `x` and `table`. It returns the index of the closest row in `table` for
#' each row in `x`.
#'
#' @param x `numeric` matrix or data frame representing the query data. Each
#' row in `x` will be compared to every row in `table`. Both `x` and `table` are
#' expected to have the same number of columns, and the columns are expected to
#' be in the same order.
#'
#' @param table `numeric` matrix or data frame containing the reference data to
#' be matched with each row of `x`. Each row in `table` will be compared to
#' every row in `x`. Both `table` and `x` are expected to have the same number
#' of columns, and the columns are expected to be in the same order.
#'
#' @param ppm `numeric` representing a relative, value-specific
#' parts-per-million (PPM) tolerance that is added to tolerance (default is 0).
#'
#' @param tolerance `numeric` accepted tolerance. Defaults to `tolerance = Inf`,
#' thus for each row in x the closest row in table is reported, regardless of
#' the magnitude of the (absolute) difference.
#'
#' @return `integer` vector of indices indicating the closest row of `table` for
#' each row of `x`. If no suitable match is found for a row in `x` based on the
#' specified `tolerance` and `ppm`, the corresponding index is set to `NA`.
#'
#' @details
#' If, for a row of `x`, two rows of `table` are closest only the index of first
#' row will be returned.
#'
#' For both the `tolerance` and `ppm` arguments, if their length is different to
#' the number of columns of `x` and `table`, the input argument will be
#' replicated to match it.
#'
#' @author Philippine Louail
#'
#' @importFrom MsCoreUtils ppm
#'
#' @export
#'
#' @examples
#' x <- data.frame(a = 1:5, b = 3:7)
#' table <- data.frame(c = c(11, 23, 3, 5, 1), d = c(32:35, 45))
#'
#' ## Get for each row of `x` the index of the row in `table` with the smallest
#' ## difference of values (per column)
#' mclosest(x, table)
#'
#' ## If the absolute difference is larger than `tolerance`, return `NA`. Note
#' ## that the tolerance value of `25` is used for difference for each pairwise
#' ## column in `x` and `table`.
#' mclosest(x, table, tolerance = 25)
#'
mclosest <- function(x,
table,
ppm = 0,
tolerance = Inf) {
## sanity checks
if (is.null(dim(x)))
stop("'x' needs to be an array")
if (is.null(dim(table)))
stop("'table' needs to be an array")
if (ncol(x) != ncol(table))
stop("'x' and 'table' need to have same number of columns")
if (!is.matrix(x))
x <- as.matrix(x)
if (!is.matrix(table))
table <- as.matrix(table)
nc <- ncol(x)
nr <- nrow(table)
if (length(ppm) != nc)
ppm <- rep(ppm[1], nc)
if (length(tolerance) != nc)
tolerance <- rep(tolerance[1], nc)
## Initialize a vector to store closest row indices
closest_indices <- rep(NA_integer_ , nrow(x))
for (i in seq_len(nrow(x))) {
abdiff <- abs(table - rep(x[i, ], each = nr))
## Remove differences lower than tolerance
abdiff[abdiff > rep((tolerance + ppm(x[i,], ppm)), each = nr)] <- NA
ranked <- apply(abdiff, 2, rank, na.last="keep")
rowProd <- apply(ranked, 1, prod)
res <- which.min(rowProd)
if (length(res))
closest_indices[i] <- res
}
closest_indices
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.