knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "README-" )
Implements a parametric semi-supervised mixture model. The permutation test detects markers with main or interactive effects, without distinguishing them. Possible applications include genome-wide association studies and differential expression analyses.
The package semisup depends on R >= 3.0.0, and is available from Bioconductor:
if (!requireNamespace("BiocManager", quietly=TRUE)) install.packages("BiocManager") BiocManager::install("semisup")
Alternatively, it can be installed from GitHub. This requires the package devtools:
devtools::install_github("rauschenberger/semisup",build_vignettes=TRUE)
Please restart R before loading the package and its documentation:
library(semisup) utils::help(semisup) utils::vignette("semisup")
A Rauschenberger, RX Menezes, MA van de Wiel, NM van Schoor, and MA Jonker (2020). Semi-supervised mixture test for detecting markers associated with a quantitative trait. Manuscript in preparation. (outdated version: html pdf)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.