# context("Descriptive Statistics using visualTest")
# library(DAPARdata)
# data(Exp1_R25_prot)
# test <- Exp1_R25_prot[1:100]
# test <- mvFilter(test, "wholeMatrix", 6)
# test_that("diffAnaVolcanoplot", {
# condition1 <- '25fmol'
# condition2 <- '10fmol'
# data <- wrapper.diffAnaLimma(test, condition1, condition2)
# t <- diffAnaVolcanoplot(data$logFC, data$P_Value)
#
# expect_null(t)
# dev.off()
# })
# test_that("diffAnaVolcanoplot_rCharts", {
# condition1 <- '25fmol'
# condition2 <- '10fmol'
#
# cond <- c(condition1, condition2)
# data <- wrapper.diffAnaLimma(test, condition1, condition2)
# df <- data.frame(x=data$logFC,
# y = -log10(data$P_Value),
# index = as.character(rownames(test)),
# stringsAsFactors = FALSE)
# tooltipSlot <- c("Sequence.length", "Protein.IDs")
# df <- cbind(df,Biobase::fData(test)[tooltipSlot])
# colnames(df) <- gsub(".", "_", colnames(df), fixed=TRUE)
# if (ncol(df) > 3){
# colnames(df)[4:ncol(df)] <-
# paste("tooltip_", colnames(df)[4:ncol(df)], sep="")
# }
# hc_clickFunction <- JS("function(event) {
# Shiny.onInputChange('eventPointClicked', [this.index]);}")
# t <- diffAnaVolcanoplot_rCharts(df,threshold_logFC = 1,
# threshold_pVal = 3,
# conditions = cond,
# clickFunction=hc_clickFunction)
#
# expect_is(t, "highchart")
# expect_is(t$x, "list")
# expect_is(t$jsHooks, "list")
# #dev.off()
# })
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.