knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
Pooling RNA-seq and Assembling Models (PRAM) is an R package that
utilizes multiple RNA-seq datasets to predict transcript models. The workflow
of PRAM contains four steps. Figure 1 shows each step with function name and
associated key parameters. In addition, we provide a function named
evalModel()
to evaluate prediction accuracy by comparing transcript models
with true transcripts. In the later sections of this vignette, we will
describe each function in details.
knitr::include_graphics("workflow_noScreen.jpg")
Start R and enter:
devtools::install_github('pliu55/pram')
Start R and enter:
if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("pram")
For different versions of R, please refer to the appropriate Bioconductor release.
PRAM provides a function named runPRAM()
to let you conveniently run through
the whole workflow.
For a given gene annotation and RNA-seq alignments, you can predict transcript models in intergenic genomic regions:
## ## assuming the stringtie binary is in folder /usr/local/stringtie-1.3.3/ ## pram::runPRAM( in_gtf, in_bamv, out_gtf, method='plst', stringtie='/usr/loca/stringtie-1.3.3/stringtie')
in_gtf
: an input GTF file defining genomic coordinates of existing genes.
Required to have an attribute of gene_id in the ninth column.in_bamv
: a vector of input BAM file(s) containing RNA-seq alignments.
Currently,
PRAM only supports strand-specific paired-end RNA-seq with the
first mate on the right-most of transcript coordinate, i.e.,
'fr-firststrand' by Cufflinks definition.out_gtf
: an output GTF file of predicted transcript models.method
: prediction method. For the command above, we were using pooling
RNA-seq datasets and building models by stringtie. For a list
of available PRAM methods, please check Table \@ref(tab:methods)
below.stringtie
: location of the stringtie binary. PRAM's model-building step
depends on external software. For more information on this
topic, please see Section \@ref(id:required-external-software)
below.PRAM has included input examples files in its extdata/demo/
folder. The table below provides a quick summary of all the example files.
Table: runPRAM()
's input example files.
| input argument | file name(s) |
|:--------------:|:------------:|
| in_gtf
| in.gtf |
| in_bamv
| SZP.bam, TLC.bam |
You can access example files by system.file()
in R, e.g. for the
argument in_gtf
, you can access its example file by
system.file('extdata/demo/in.gtf', package='pram')
Below shows the usage of runPRAM()
with example input files:
in_gtf = system.file('extdata/demo/in.gtf', package='pram') in_bamv = c(system.file('extdata/demo/SZP.bam', package='pram'), system.file('extdata/demo/TLC.bam', package='pram') ) pred_out_gtf = tempfile(fileext='.gtf') ## ## assuming the stringtie binary is in folder /usr/local/stringtie-1.3.3/ ## pram::runPRAM( in_gtf, in_bamv, pred_out_gtf, method='plst', stringtie='/usr/loca/stringtie-1.3.3/stringtie')
defIgRanges()
To predict intergenic transcripts, we must first define
intergenic regions by defIgRanges()
. This function requires a GTF file
containing known gene annotation supplied for its in_gtf
argument. This GTF
file should contain an attribue of gene_id
in its ninth column. We provided an example input GTF file in PRAM package:
extdata/gtf/defIGRanges_in.gtf
.
In addition to gene annotation, defIgRanges()
also requires user to provide
chromosome sizes so that it would know the maximum genomic ranges.
You can provide one of the following arguments:
url_hg19_chromsize= 'http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/chromInfo.txt.gz'
chromgrs
: a GRanges object, orgenome
: a genome name, currently supported ones are:
hg19, hg38, mm9, and mm10, orfchromsize
: a UCSC genome browser-style size file, e.g.
hg19By default, defIgRanges()
will define intergenic ranges as regions 10 kb away
from any known genes. You can change it by the radius
argument.
pram::defIgRanges(system.file('extdata/gtf/defIgRanges_in.gtf', package='pram'), genome = 'hg38')
prepIgBam()
Once intergenic regions were defined, prepIgBam()
will extract corresponding
RNA-seq alignments from input BAM files. In this way, transcript models
predicted at later stage will solely from intergenic regions. Also, with fewer
RNA-seq alignments, model prediction will run faster.
Three input arguments are required by prepIgBam()
:
finbam
: an input RNA-seq BAM file sorted by genomic coordinate. Currently,
we only support strand-specific
paired-end RNA-seq data with the first mate on the right-most of transcript
coordinate, i.e. 'fr-firststrand' by Cufflinks's definition.iggrs
: a GRanges object to define intergenic regions.foutbam
: an output BAM file.finbam =system.file('extdata/bam/CMPRep2.sortedByCoord.raw.bam', package='pram') iggrs = GenomicRanges::GRanges('chr10:77236000-77247000:+') foutbam = tempfile(fileext='.bam') pram::prepIgBam(finbam, iggrs, foutbam)
buildModel()
buildModel()
predict transcript models from RNA-seq BAM file(s).
This function requires two arguments:
in_bamv
: a vector of input BAM file(s)out_gtf
: an output GTF file containing predicted transcript modelsbuildModel()
has implemented seven transcript prediction methods. You
can specify it by the method
argument with one of the keywords:
plcf, plst, cfmg, cftc, stmg, cf, and st.
The first five denote meta-assembly methods that utilize multiple RNA-seq
datasets to predict a single set of transcript models. The last two represent
methods that predict transcript models from a single RNA-seq dataset.
The table below compares prediction steps for these seven methods. By
default, buildModel()
uses plcf to predict transcript models.
Table: (#tab:methods)Prediction steps of the seven buildModel()
methods
| method | meta-assembly | preparing RNA-seq input | building transcripts | \ assembling transcripts | |:--------:|:---:|:------------------:|:---------------:|:-----------------:| | plcf | yes | pooling alignments | Cufflinks | no | | plst | yes | pooling alignments | StringTie | no | | cfmg | yes | no | Cufflinks | Cuffmerge | | cftc | yes | no | Cufflinks | TACO | | stmg | yes | no | StringTie | StringTie-merge | | cf | no | no | Cufflinks | no | | st | no | no | StringTie | no |
Depending on your specified prediction method, buildModel()
requires
external software: Cufflinks, StringTie and/or TACO, to build and/or assemble
transcript
models. You can either specify the software location using the cufflinks
,
stringtie
, and taco
arguments in buildModel()
, or simply leave these
three arugments undefined and let PRAM download them for you
automatically. The table below summarized software versions buildModel()
would download when required software was not specified. Please note that,
for macOS, pre-compiled Cufflinks binary
versions 2.2.1 and 2.2.0 appear to have an issue on processing BAM files,
therefore we recommend to use version 2.1.1 instead.
url_cf_web = paste0('[Cufflinks, Cuffmerge]', '(http://cole-trapnell-lab.github.io/cufflinks/)') url_cf_lnx = paste0('[v2.2.1]', '(http://cole-trapnell-lab.github.io/cufflinks/assets/', 'downloads/cufflinks-2.2.1.Linux_x86_64.tar.gz)') url_cf_mac = paste0('[v2.1.1]', '(http://cole-trapnell-lab.github.io/cufflinks/assets/', 'downloads/cufflinks-2.1.1.OSX_x86_64.tar.gz)') cf_methods = '__plcf__, __cfmg__, __cftc__, and __cf__' url_st_web = paste0('[StringTie, StringTie-merge]', '(https://ccb.jhu.edu/software/stringtie/)') url_st_lnx = paste0('[v1.3.3b]', '(http://ccb.jhu.edu/software/stringtie/dl/', 'stringtie-1.3.3b.Linux_x86_64.tar.gz)') url_st_mac = paste0('[v1.3.3b]', '(http://ccb.jhu.edu/software/stringtie/dl/', 'stringtie-1.3.3b.OSX_x86_64.tar.gz)') st_methods = '__plst__, __stmg__, and __st__' url_tc_web = '[TACO](https://tacorna.github.io)' url_tc_lnx = paste0('[v0.7.0]', '(https://github.com/tacorna/taco/releases/download/', 'v0.7.0/taco-v0.7.0.Linux_x86_64.tar.gz)') url_tc_mac = paste0('[v0.7.0]', '(https://github.com/tacorna/taco/releases/download/', 'v0.7.0/taco-v0.7.0.OSX_x86_64.tar.gz)')
Table: (#tab:software)buildModel()
-required software and recommended version
| software | Linux binary | macOS binary | required by |
|:--------:|:------------:|:------------:|:-----------:|
| r url_cf_web
| r url_cf_lnx
| r url_cf_mac
| r cf_methods
|
| r url_st_web
| r url_st_lnx
| r url_st_mac
| r st_methods
|
| r url_tc_web
| r url_tc_lnx
| r url_tc_mac
| cftc |
fbams = c( system.file('extdata/bam/CMPRep1.sortedByCoord.clean.bam', package='pram'), system.file('extdata/bam/CMPRep2.sortedByCoord.clean.bam', package='pram') ) foutgtf = tempfile(fileext='.gtf') ## ## assuming the stringtie binary is in folder /usr/local/stringtie-1.3.3/ ## pram::buildModel(fbams, foutgtf, method='plst', stringtie='/usr/loca/stringtie-1.3.3/stringtie')
selModel()
Once transcript models were built, you may want to select a subset of them by
their genomic features. selModel()
was developed for this purpose.
It allows you to select transcript models by their total number of exons and
total length of exons and introns.
selModel()
requires two arguments:
fin_gtf
:input GTF file containing to-be-selected transcript models. This
file is required to have transcript_id attribute in the ninth
column.fout_gtf
: output GTF file containing selected transcript models.By default: selModel()
will select transcript models with $\ge$ 2 exons and
$\ge$ 200 bp total length of exons and introns. You can change the default
using the min_n_exon
and min_tr_len
arguments.
fin_gtf = system.file('extdata/gtf/selModel_in.gtf', package='pram') fout_gtf = tempfile(fileext='.gtf') pram::selModel(fin_gtf, fout_gtf)
evalModel()
After PRAM has predicted a number of transcript models, you may wonder how
accurate these models are. To answer this question, you can compare PRAM
models with real transcripts (i.e., positive controls) that you know should be
predicted. PRAM's evalModel()
function will help you to make such comparison.
It will calculate precision and recall rates on three features of a transcript:
exon nucleotides, individual splice junctions, and transcript structure (i.e.,
whether all splice junctions within a transcript were constructed in a model).
evalModel()
requires two arguments:
model_exons
: genomic coordinates of transcript model exons.target_exons
: genomic coordinates of real transcript exons. The two arguments can be in multiple formats:
GRanges
objectscharacter
objects denoting names of GTF files data.table
objects containing the following five columns for each
exon:model_exons
is the name of a GTF file and target_exons
is a data.table
object.The output of evalModel()
is a data.table
object, where columns are
evaluation results and each row is three transcript features.
Table: evalModel()
output columns
| column name | representation | |:-------------:|:------------------------------------:| | feat | transcript feature | | ntp | number of true positives (TP) | | nfn | number of false negatives (FN) | | nfp | number of false positives (FP) | | precision | precision rate: $\frac{TP}{(TP+FP)}$ | | recall | recall rate: $\frac{TP}{(TP+FN)}$ |
Table: evalModel()
output rows
| feature name | representation | |:------------:|:--------------------------:| | exon_nuc | exon nucleotide | | indi_jnc | individual splice junction | | tr_jnc | transcript structure |
fmdl = system.file('extdata/benchmark/plcf.tsv', package='pram') ftgt = system.file('extdata/benchmark/tgt.tsv', package='pram') mdldt = data.table::fread(fmdl, header=TRUE, sep="\t") tgtdt = data.table::fread(ftgt, header=TRUE, sep="\t") pram::evalModel(mdldt, tgtdt)
Below is the output of sessionInfo()
on the system on which this document
was compiled.
{r sessionInfo, echo=FALSE}
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.