r study
r author
r format(Sys.time(), '%d %B, %Y')
normalization.summary$parameters
The variance captured by each principal component.
out <- NULL for (plot in normalization.summary$scree.plot$graphs) out <- c(out, knit_child(file.path(report.path, "plot.rmd")))
cat(out, sep="\n\n")
The following plots show the first 3 principal components of the control matrix colored by batch variables. Batch variables with more than 10 levels are omitted.
out <- NULL for (plot in normalization.summary$control.batch$pc.plots) out <- c(out, knit_child(file.path(report.path, "wide-plot.rmd")))
cat(out, sep="\n\n")
Principal components of the control probes were regressed against batch variables. Shown are the $-log_{10}$ p-values for these regressions. The horizontal dotted line denotes $p = 0.05$ in log-scale.
out <- NULL for (plot in normalization.summary$control.batch$fplots) out <- c(out, knit_child(file.path(report.path, "wide-plot.rmd")))
cat(out, sep="\n\n")
The following plots show regression coefficients when
each principal component is regressed against each batch variable level
along with 95% confidence intervals.
Cases significantly different from zero are coloured red
(p < r normalization.summary$parameters$batch.threshold
, t-test).
out <- NULL for (plot in normalization.summary$control.batch$cplots) out <- c(out, knit_child(file.path(report.path, "plot.rmd")))
cat(out, sep="\n\n")
tab <- normalization.summary$control.batch$tab tab <- tab[which(tab$p.value < normalization.summary$parameters$batch.threshold),] for (i in 1:ncol(tab)) { if (is.numeric(tab[,i])) { tab[,i] <- format(tab[,i], digits=3) tab[,i] <- sub("^[ ]*NA$", "", tab[,i]) } if (any(is.na(tab[,i]))) tab[which(is.na(tab[,i])),i] <- "" } if(nrow(tab) > 0) kable(tab,row.names=F)
The following plots show the first 3 principal components of the
r normalization.summary$parameters$probe.range
most variable
probes colored by batch variables.
Batch variables with more than 10 levels are omitted.
out <- NULL for (plot in normalization.summary$probe.batch$pc.plots) out <- c(out, knit_child(file.path(report.path, "wide-plot.rmd")))
cat(out, sep="\n\n")
The most variable normalized probes were extracted, decomposed into principal components and each component regressed against each batch variable. If the normalization has performed well then there will be no associations between normalized probe PCs and batch variables. Horizontal dotted line denotes $p = 0.05$ in log-scale.
out <- NULL for (plot in normalization.summary$probe.batch$fplots) out <- c(out, knit_child(file.path(report.path, "wide-plot.rmd")))
cat(out, sep="\n\n")
The following plots show regression coefficients when
each principal component is regressed against each batch variable level
along with 95% confidence intervals.
Cases significantly different from zero are coloured red
(p < r normalization.summary$parameters$batch.threshold
, t-test).
out <- NULL for (plot in normalization.summary$probe.batch$cplots) out <- c(out, knit_child(file.path(report.path, "plot.rmd")))
cat(out, sep="\n\n")
tab <- normalization.summary$probe.batch$tab tab <- tab[which(tab$p.value < normalization.summary$parameters$batch.threshold),] for (i in 1:ncol(tab)) { if (is.numeric(tab[,i])) { tab[,i] <- format(tab[,i], digits=3) tab[,i] <- sub("^[ ]*NA$", "", tab[,i]) } if (any(is.na(tab[,i]))) tab[which(is.na(tab[,i])),i] <- "" } if(nrow(tab) > 0) kable(tab,row.names=F)
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.