View source: R/profileAccuracyEstimateDev.R
profileAccuracyEstimate | R Documentation |
profileAccuracyEstimate
will compare the predicted ChIP-seq-like
profile to real ChIP-seq data and return a set of metrics describing how
accurate the predicted model is compared to real data.
profileAccuracyEstimate(genomicProfiles,ChIPScore, parameterOptions=NULL,method="all",cores=1)
genomicProfiles |
|
ChIPScore |
|
parameterOptions |
|
method |
|
cores |
|
In order to assess the quality of the model against experimental ChIP-seq data, ChIPanalyser offers a wide range of method to choose from. These methods are also used when computing optimal paramters.
Returns list of goodness of fit metrics for each loci and each parameter selected.
Patrick C. N. Martin <pm16057@essex.ac.uk>
Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-wide binding profiles. Nucleic Acids Res., 43, 84–94. Patrick C.N. Martin and Nicolae Radu Zabe (2020) Dissecting the binding mechanisms of transcription factors to DNA using a statistical thermodynamics framework. CSBJ, 18, 3590-3605.
#Data extraction data(ChIPanalyserData) # path to Position Frequency Matrix PFM <- file.path(system.file("extdata",package="ChIPanalyser"),"BEAF-32.pfm") #As an example of genome, this example will run on the Drosophila genome if(!require("BSgenome.Dmelanogaster.UCSC.dm6", character.only = TRUE)){ if (!requireNamespace("BiocManager", quietly=TRUE)) install.packages("BiocManager") BiocManager::install("BSgenome.Dmelanogaster.UCSC.dm6") } library(BSgenome.Dmelanogaster.UCSC.dm6) DNASequenceSet <- getSeq(BSgenome.Dmelanogaster.UCSC.dm6) # Building genomicProfiles object GPP <- genomicProfiles(PFM=PFM,PFMFormat="JASPAR", BPFrequency=DNASequenceSet) # Computing Genome Wide GenomeWide <- computeGenomeWideScore(genomicProfiles = GPP, DNASequenceSet = DNASequenceSet) #Compute PWM Scores PWMScores <- computePWMScore(genomicProfiles = GenomeWide, DNASequenceSet = DNASequenceSet, loci = top, chromatinState = Access) #Compute Occupnacy Occupancy <- computeOccupancy(genomicProfiles = PWMScores) #Compute ChIP profiles chipProfile <- computeChIPProfile(genomicProfiles=Occupancy,loci=top) #Estimating accuracy estimate AccuracyEstimate <- profileAccuracyEstimate(genomicProfiles = chipProfile, ChIPScore = chip, occupancyProfileParameters = OPP)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.