utils::globalVariables(c(
"..count..", "color", "log_pval", "param pval",
"param", "pval"
))
#' Plot p-values of methytmle objects
#'
#' @param x Object of class \code{methytmle} as produced by an appropriate call
#' to \code{methyvim}.
#' @param ... Additional arguments passed \code{plot} as necessary.
#' @param type The type of plot to build: one of side-by-side histograms (type
#' "both") comparing raw p-values to FDR-adjusted p-values (using the FDR-MSA
#' correction) or either of these two histogram separately. Set this argument
#' to "raw_pvals" for a histogram of the raw p-values, and to "fdr_pvals" for
#' a histogram of the FDR-corrected p-values.
#'
#' @return Object of class \code{ggplot} containing a histogram or side-by-side
#' histograms of the raw (marginal) and corrected p-values, with the latter
#' computed automatically using the method of Tuglus and van der Laan.
#'
#' @importFrom dplyr "%>%" select slice arrange transmute
#' @importFrom ggplot2 ggplot aes geom_histogram xlab ylab ggtitle guides
#' guide_legend theme_bw
#' @importFrom ggsci scale_fill_gsea
#' @importFrom gridExtra grid.arrange
#'
#' @export
#'
#' @method plot methytmle
#'
#' @examples
#' suppressMessages(library(SummarizedExperiment))
#' library(methyvimData)
#' data(grsExample)
#' var_int <- as.numeric(colData(grsExample)[, 1])
#' # TMLE procedure for the ATE parameter over M-values with Limma filtering
#' methyvim_out_ate <- suppressWarnings(
#' methyvim(
#' data_grs = grsExample, sites_comp = 25, var_int = var_int,
#' vim = "ate", type = "Mval", filter = "limma", filter_cutoff = 0.1,
#' parallel = FALSE, tmle_type = "glm"
#' )
#' )
#' plot(methyvim_out_ate)
plot.methytmle <- function(x, ..., type = "both") {
# get corrected p-values and add them to output object
pval_fdr <- fdr_msa(pvals = x@vim$pval, total_obs = nrow(x))
vim_table <- as.data.frame(cbind(x@vim, pval_fdr))
# plot of raw p-values
p1 <- ggplot2::ggplot(vim_table, ggplot2::aes(pval, xmin = 0, xmax = 1)) +
ggplot2::geom_histogram(ggplot2::aes(
y = ..count..,
fill = ..count..
),
colour = "white", na.rm = TRUE,
binwidth = 0.025
) +
ggplot2::ggtitle("Histogram of raw p-values") +
ggplot2::xlab("magnitude of raw p-values") +
ggsci::scale_fill_gsea() +
ggplot2::guides(fill = ggplot2::guide_legend(title = NULL)) +
ggplot2::theme_bw()
# plot of FDR-corrected p-values
p2 <- ggplot2::ggplot(vim_table, ggplot2::aes(pval_fdr, xmin = 0, xmax = 1)) +
ggplot2::geom_histogram(ggplot2::aes(
y = ..count..,
fill = ..count..
),
colour = "white", na.rm = TRUE,
binwidth = 0.025
) +
ggplot2::ggtitle("Histogram of FDR-corrected p-values") +
ggplot2::xlab("magnitude of FDR-corrected p-values") +
ggsci::scale_fill_gsea() +
ggplot2::guides(fill = ggplot2::guide_legend(title = NULL)) +
ggplot2::theme_bw()
if (type == "both") {
# return a grob with the two plots side-by-side
gridExtra::grid.arrange(p1, p2, nrow = 1)
} else if (type == "raw_pvals") {
return(p1)
} else if (type == "fdr_pvals") {
return(p2)
}
}
################################################################################
#' Heatmap for methytmle objects
#'
#' @param x Object of class \code{methytmle} as produced by an appropriate call
#' to \code{methyvim}.
#' @param ... Additional arguments passed to \code{superheat}. Consult the
#' documentation of the \code{superheat} package for a list of options.
#' @param n_sites Numeric indicating the number of CpG sites to be shown in the
#' plot. If the number of sites analyzed is greater than this cutoff, sites to
#' be displayed are chosen by ranking sites based on their raw (marginal)
#' p-values.
#' @param type Whether to plot the original data (M-values or Beta-values) for
#' the set of top CpG sites or to plot the measurements after applying a
#' transformation into influence curve space (with respect to the target
#' parameter of interest). The latter uses the fact that the parameters have
#' asymptotically linear representations to obtain a rotation of the raw data
#' into an alternative space; moreover, in this setting, the heatmap reduces
#' to visualizing a supervised clustering procedure.
#'
#' @return Nothing. This function is called for its side-effect of outputting a
#' heatmap to the graphics device. The heatmap is constructed using the
#' \code{superheat} package.
#'
#' @importFrom dplyr "%>%" select slice arrange transmute
#' @importFrom superheat superheat
#'
#' @export
#'
#' @examples
#' suppressMessages(library(SummarizedExperiment))
#' library(methyvimData)
#' data(grsExample)
#' var_int <- as.numeric(colData(grsExample)[, 1])
#' # TMLE procedure for the ATE parameter over M-values with Limma filtering
#' methyvim_out_ate <- suppressWarnings(
#' methyvim(
#' data_grs = grsExample, sites_comp = 25, var_int = var_int,
#' vim = "ate", type = "Mval", filter = "limma", filter_cutoff = 0.1,
#' parallel = FALSE, tmle_type = "glm"
#' )
#' )
#' methyheat(methyvim_out_ate, type = "raw")
methyheat <- function(x, ..., n_sites = 25, type = "raw") {
# need observations in influence curve space to plot on heatmap
if (type == "ic" & sum(dim(x@ic)) == 0) {
stop("Please re-run 'methyvim' and set argument 'return_ic' to 'TRUE'.")
}
# set up annotations
tx_annot <- ifelse(x@var_int == 0, "Control", "Treated")
# rank sites based on raw p-value
sites_ranked <- x@vim %>%
data.frame() %>%
dplyr::select(pval) %>%
unlist() %>%
as.numeric() %>%
order()
sites_mask <- x@screen_ind[sites_ranked]
# subset matrix of measures/estimates to those for the top ranked sites
if (type == "ic") {
sites_mat <- x@ic %>%
data.frame() %>%
dplyr::slice(sites_mask) %>%
as.matrix()
} else if (type == "raw") {
sites_mat <- SummarizedExperiment::assay(x) %>%
data.frame() %>%
dplyr::slice(sites_mask) %>%
as.matrix()
}
# limit to the specified maximum number of sites
if (!is.null(n_sites) & (nrow(sites_mat) > n_sites)) {
sites_mat <- sites_mat %>%
data.frame() %>%
dplyr::slice(seq_len(n_sites)) %>%
as.matrix()
}
# plot the (super) heat map
superheat::superheat(sites_mat,
row.dendrogram = TRUE,
grid.hline.col = "white", force.grid.hline = TRUE,
grid.vline.col = "white", force.grid.vline = TRUE,
membership.cols = tx_annot,
title = paste("Heatmap of Top", nrow(sites_mat), "CpGs"),
...
)
}
################################################################################
#' Volcano plot for methytmle objects
#'
#' @param x Object of class \code{methytmle} as produced by an appropriate call
#' to \code{methyvim}.
#' @param param_bound Numeric for a threshold indicating the magnitude of the
#' size of the effect considered to be interesting. This is used to assign
#' groupings and colors to individual CpG sites.
#' @param pval_bound Numeric for a threshold indicating the magnitude of
#' p-values deemed to be interesting. This is used to assign groupings and
#' colors to individual CpG sites.
#'
#' @return Object of class \code{ggplot} containing a volcano plot of the
#' estimated effect size on the x-axis and the -log10(p-value) on the y-axis.
#' The volcano plot is used to detect possibly false positive cases, where a
#' test statistic is significant due to low variance.
#'
#' @importFrom dplyr "%>%" select slice arrange transmute
#' @importFrom ggplot2 ggplot aes geom_point xlab ylab ggtitle xlim guides
#' guide_legend theme_bw
#' @importFrom ggsci scale_fill_gsea
#'
#' @export
#'
#' @examples
#' suppressMessages(library(SummarizedExperiment))
#' library(methyvimData)
#' data(grsExample)
#' var_int <- as.numeric(colData(grsExample)[, 1])
#' # TMLE procedure for the ATE parameter over M-values with Limma filtering
#' methyvim_out_ate <- suppressWarnings(
#' methyvim(
#' data_grs = grsExample, sites_comp = 25, var_int = var_int,
#' vim = "ate", type = "Mval", filter = "limma", filter_cutoff = 0.1,
#' parallel = FALSE, tmle_type = "glm"
#' )
#' )
#' methyvolc(methyvim_out_ate)
methyvolc <- function(x, param_bound = 2.0, pval_bound = 0.2) {
# get corrected p-values
pval_fdr <- fdr_msa(pvals = x@vim$pval, total_obs = nrow(x))
vim_table <- as.data.frame(cbind(x@vim, pval_fdr))
# set up object for plotting
into_volcano <- vim_table %>%
data.frame() %>%
dplyr::arrange(pval) %>%
dplyr::transmute(
param = if (x@param == "Average Treatment Effect") {
as.numeric(x@vim$est_ate)
} else if (x@param == "Relative Risk") {
as.numeric(x@vim$est_logrr)
},
log_pval = -log10(pval),
pval_fdr = I(pval_fdr),
color = ifelse((param > param_bound) & (pval_fdr < pval_bound), "1",
ifelse((param < -param_bound) & (pval_fdr < pval_bound),
"-1", "0"
)
)
)
# create and return plot object
p <- ggplot2::ggplot(into_volcano, ggplot2::aes(x = param, y = log_pval)) +
ggplot2::geom_point(ggplot2::aes(colour = color)) +
ggplot2::xlab(ifelse(x@param == "Relative Risk",
paste("Estimated log-Change in", x@param),
paste("Estimated Change in", x@param)
)) +
ggplot2::ylab("-log10(raw p-value)") +
ggplot2::xlim(max(abs(into_volcano$param)) * c(-1, 1)) +
ggsci::scale_fill_gsea() +
ggplot2::guides(color = ggplot2::guide_legend(title = NULL)) +
# ggplot2::guides(color = FALSE) +
ggplot2::theme_bw()
return(p)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.