test_that("compute_corr works", {
data("CnR_H3K27ac")
data("CnT_H3K27ac")
data("encode_H3K27ac")
peakfiles <- list(CnR_H3K27ac=CnR_H3K27ac, CnT_H3K27ac=CnT_H3K27ac)
reference <- list("encode_H3K27ac" = encode_H3K27ac)
#increasing bin_size for speed but lower values will give more granular corr
bins <- c(500000,100000,10000,5000
# 1000,500,400,200,100,50
)
cor_mats <- mapply(stats::setNames(bins,bins),
SIMPLIFY = FALSE,
FUN=function(bin_size){
compute_corr(peakfiles = peakfiles,
reference = reference,
genome_build = "hg19",
workers = 1,
bin_size = bin_size)
})
cor_mats2 <- mapply(cor_mats,
SIMPLIFY = FALSE,
FUN=function(x){diag(x)<-NA;x})
cor_mean <- mapply(cor_mats2, FUN=mean, na.rm=TRUE)
testthat::expect_equal(round(mean(cor_mean),2),.75)
#### Larger bin size strongly predicts great inter-sample correlation ####
testthat::expect_gte(
cor(as.numeric(names(cor_mean)), cor_mean), .85
)
# saveRDS(cor_mats, file = "~/Downloads/compute_corr.cor_mats.rds")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.