knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(dataAnalysisMisc)
meta <- read.csv(paste(system.file("extdata", package="dataAnalysisMisc"), "/meta.csv",sep=""), row.names=1) data <- read.csv(paste(system.file("extdata", package="dataAnalysisMisc"), "/data_m.csv", sep=""), row.names=1) require(ggplot2) ggplot(meta, aes(x=CONT)) + geom_histogram() ggplot(meta, aes(x=BIN)) + geom_histogram()
# Please assure manually that order of cols of data corresponds # to order of rows in meta obj <- new("fitModel", data, meta, var="BIN", type="lr")
Test influence of grouping covariate (will be the predicted variable) on the dependent variables (features)
Likelihood ratio test p-value (per model) to select features.
obj <- testSign(obj, pCut=0.05, pAdj="none") ### with covariates objC <- testSign(obj, pCut=0.05, pAdj="none", frm0=as.formula(VAL~CONT), frm=as.formula(VAL~CONT+BIN))
## non adjusted obj <- cv(obj) ##adjusted objC <- cv(obj, frm="~CONT+BIN")
obj <- fitM(obj, interval="prediction") obj <- fitM(obj, interval="prediction", type="response") plotModel(obj) obj@model ### log reg # default: prediciton interval rocDetail(obj@pred$fit, obj@meta$BIN) rocDetail(obj@pred$fit, obj@meta$BIN, obj@model)
# Please assure manually that order of cols of data corresponds # to order of rows in meta obj <- new("fitModel", data, meta, var="CONT", type="lm")
Test influence of grouping covariate (will be the predicted variable) on the dependent variables (features)
Likelihood ratio test p-value (per model) to select features.
obj <- testSign(obj, pCut=0.05, pAdj="none") ### with covariates objC <- testSign(obj, pCut=0.05, pAdj="none", frm0=as.formula(VAL~CONT), frm=as.formula(VAL~CONT+BIN))
## non adjusted obj <- cv(obj) ##adjusted objC <- cv(obj, frm="~CONT+BIN")
obj <- fitM(obj, interval="prediction") obj <- fitM(obj, interval="prediction", type="response") plotModel(obj) objC <- fitM(obj, interval="confidence") objC <- fitM(obj, interval="confidence", type="response") plotModel(objC)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.