knitr::opts_chunk$set(tidy=FALSE, cache=FALSE, dev="png", message=FALSE, error=FALSE, warning=FALSE)
The Swish method for differential expression analysis of bulk or single-cell RNA-seq data using inferential replicate counts is described in the following reference: @swish doi: 10.1093/nar/gkz622.
We note that Swish extends and builds on another method, SAMseq
[@samseq], implemented in the samr package,
by taking into account inferential uncertainty, and allowing to
control for batch effects and matched samples. Additionally, Swish
has methods for testing changes in effect size across secondary
covariates, which we refer to as "interactions". Swish also
implements correlation tests as in the original SAMseq package.
swish
calls functions from the qvalue [@qvalue] or samr package
for calculation of local FDR and q-value. This vignette gives an
example of differential analysis of matched samples, and an
interaction test for matched samples, to see if a condition effect
changes in magnitude across two groups of samples.
The following lines of code will perform a basic transcript-level
swish
two group analysis of bulk RNA-seq. For more details, read
on. There is a special section below for two-group analysis
of scRNA-seq.
# 'coldata.csv': sample information table coldata <- read.csv("coldata.csv") library(tximeta) y <- tximeta(coldata) # reads in counts and inf reps library(fishpond) y <- scaleInfReps(y) # scales counts y <- labelKeep(y) # labels features to keep set.seed(1) y <- swish(y, x="condition") # simplest Swish case
Note: Inferential replicates, either from Gibbs sampling or
bootstrapping of reads, are required for the swish method.
When running Salmon, you can set --numGibbsSamples 30
to generate
Gibbs samples, or --numBootstraps 30
to generate bootstrap samples
(we typically recommend 20-30 inferential replicates).
The results can be found in mcols(y)
. For example, one can calculate
the number of genes passing a 5% FDR threshold:
table(mcols(y)$qvalue < .05)
One can at any point remove the genes that didn't pass the expression
filter with the following line of code (can be run before or after
swish
). These genes are ignored by swish
, and so will have NA
in
the results columns in mcols(y)
.
y <- y[mcols(y)$keep,]
A gene-level analysis looks identical to a transcript-level analysis, only the input data changes. Examples follow.
Lastly, what is the structure of the output of tximeta
[@tximeta], which is
used in swish
? See the section below, Structure of tximeta
output / swish input.
We begin the fishpond vignette by loading data from a Bioconductor Experiment Data package, macrophage. The package contains RNA-seq quantification from 24 RNA-seq samples, which are a subset of the RNA-seq samples generated and analyzed by @alasoo - doi: 10.1038/s41588-018-0046-7.
The experiment involved treatment of macrophage cell lines from a number of human donors with IFN gamma, Salmonella infection, or both treatments combined. In the beginning of this vignette, we will focus on comparing the IFN gamma stimulated cell lines with the control cell lines, accounting for the paired nature of the data (cells from the same donor). Later in the vignette we will analyze differences in the Salmonella infection response by IFN gamma treatment status -- whether the cells are primed for immune response.
We load the package, and point to the extdata
directory. For a
typical analysis, the user would just point dir
to the location on
the machine or cluster where the transcript quantifications are stored
(e.g. the quant.sf
files).
library(macrophage) dir <- system.file("extdata", package="macrophage")
The data was quantified using Salmon [@salmon] 0.12.0 against the Gencode v29 human reference transcripts [@gencode]. For more details and all code used for quantification, refer to the macrophage package vignette.
Importantly, --numGibbsSamples 20
was used to generate 20
inferential replicates with Salmon's Gibbs sampling procedure.
We also
recommend to use --gcBias
when running Salmon to protect against
common sample-specific biases present in RNA-seq data.
We start by reading in a CSV with the column data, that is, information about the samples, which are represented as columns of the SummarizedExperiment object we will construct containing the counts of reads per gene or transcript.
coldata <- read.csv(file.path(dir, "coldata.csv")) head(coldata)
We will subset to certain columns of interest, and re-name them for later.
coldata <- coldata[,c(1,2,3,5)] names(coldata) <- c("names","id","line","condition")
coldata
needs to have a column files
which specifies the path to
the quantification files. In this case, we've gzipped the
quantification files, so we point to the quant.sf.gz
file. We make
sure that all the files exist in the location we specified.
coldata$files <- file.path(dir, "quants", coldata$names, "quant.sf.gz") all(file.exists(coldata$files))
We will read in quantification data for some of the samples. First we load the SummarizedExperiment package. We will store out data and the output of the statistical method in a SummarizedExperiment object. We use the tximeta [@tximeta] package to read in the data:
suppressPackageStartupMessages(library(SummarizedExperiment))
# This hidden code chunk is only needed for Bioc build machines, # so that 'fishpond' will build regardless of whether # the machine can connect to ftp.ebi.ac.uk. # Using linkedTxomes to point to a GTF that lives in the macrophage pkg. # The chunk can be skipped if you have internet connection, # as tximeta will automatically ID the transcriptome and DL the GTF. library(tximeta) makeLinkedTxome( indexDir=file.path(dir, "gencode.v29_salmon_0.12.0"), source="myGENCODE", organism="Homo sapiens", release="29", genome="GRCh38", fasta="ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_29/gencode.v29.transcripts.fa.gz", gtf=file.path(dir, "gencode.v29.annotation.gtf.gz"), # local version write=FALSE ) # 'myGENCODE' is used to avoid tximeta() attempting to # pull down the TxDb from AnnotationHub, alterantively # once can specify useHub=FALSE.
The macrophage package contains a number of samples under different
conditions. In this vignette, we will demonstrate a two group
comparison, and so we first subset our coldata
to the "naive"
and "IFNg"
groups. Log fold changes will be made comparing
IFNg
to naive
(the reference level).
coldata <- coldata[coldata$condition %in% c("naive","IFNg"),] coldata$condition <- factor(coldata$condition, levels=c("naive","IFNg"))
We load in the quantification data with tximeta
:
library(tximeta) se <- tximeta(coldata)
We can see that all the assays have been loaded:
assayNames(se)
tximeta
loads transcript-level data, although it can later be
summarized to the gene levels:
head(rownames(se))
# hidden chunk to trick tximeta into knowing this is GENCODE, # this is only needed because above we labelled the txome myGENCODE metadata(se)$txomeInfo$source <- "GENCODE"
We will rename our SummarizedExperiment y
for the statistical
analysis. For speed of the vignette, we subset to the transcripts on
chromosome 4.
y <- se y <- y[seqnames(y) == "chr4",]
Note on factor levels:
The swish
function compares expression level across factors such
that log2 fold changes are reported as the non-reference level over
the reference level. By default, R will choose a reference level
for factors based on alphabetical order, unless levels
are
explicitly set. It is recommended to set the factors levels, as in
the above code chunk, with the reference level coming first in the
character vector, so that log2 fold changes correspond to the
comparison of interest.
Running swish
has three steps: scaling the inferential replicates,
labeling the rows with sufficient counts for running differential
expression, and then calculating the statistics. As swish
makes use
of pseudo-random number generation in breaking ties and in calculating
permutations, to obtain identical results, one needs to set a random
seed before running swish()
, as we do below.
library(fishpond) y <- scaleInfReps(y) y <- labelKeep(y) y <- y[mcols(y)$keep,] set.seed(1) y <- swish(y, x="condition", pair="line")
Note: the simple paired test is the slowest of all the other
designs provided for Swish
(see further details), because it requires
recomputing the signed ranks at each permutation. Other designs avoid
recomputing ranks per permutation, or don't use ranks for the test
statistic. You can set fast=1
for simple paired designs,
which implements a one-sample z-score as the test statistic,
and permutations to provide p-values and q-values.
These permutations are much faster than those that use the signed
rank test, for example with one core, the signed rank test is 12x
slower than the one-sample z-score method when run across all
transcripts, and they nevertheless detect nearly the same sets.
y_fast <- swish(y, x="condition", pair="line", fast=1) table(original=mcols(y)$qvalue < .1, fast=mcols(y_fast)$qvalue < .1)
The default number of permutations for computing p-values is
nperms=100
. However, for paired datasets as this one, you may have
fewer maximum permutations. In this case, there are 64 possible ways
to switch the condition labels for six pairs of samples. We can set
the nperms
manually to 64, or if we had just used the default value,
swish
would set nperms
to the maximum value possible and notify
the user that it had done so.
A note about labelKeep
: by default we keep features with minN=3
samples with a minimal count of 10. For scRNA-seq data with
de-duplicated UMI counts, we recommend to lower the count, e.g. a
count of 3, across a higher number of minN
cells, depending on the
number of cells being compared. You can also set x="condition"
when
running labelKeep
which will use the condition variable to set
minN
.
The results are stored in mcols(y)
. We will show below how to pull
out the top up- and down-regulated transcripts.
We can see how many transcripts are in a 5% FDR set:
table(mcols(y)$qvalue < .05)
A number of features may have the same pvalue
and qvalue
due to
the procedure for assessing significance. We can additionally rank
features by their effect size, to break ties in the qvalue
:
most.sig <- with(mcols(y), order(qvalue, -abs(log2FC))) mcols(y)[head(most.sig),c("log2FC","qvalue")]
The top 6 genes by qvalue
and effect size in this case all have
positive LFC, although we have ranked by the largest in absolute
value, so large negative values will also appear in this list.
We can check the distribution of p-values. This looks as expected for a comparison where we expect many transcripts will be affected by the treatment (IFNg stimulation of macrophage cells). There is a flat component and then an enrichment of transcripts with p-values near 0.
hist(mcols(y)$pvalue, col="grey")
Of the transcripts in this set, which have the most extreme log2
fold change? Note that often many transcripts will share the same
q-value, so it's valuable to look at the log2 fold change as well (see
further note below on q-value computation). The log2 fold
change computed by swish
is the median over inferential replicates,
and uses a pseudo-count of 5 on the scaled counts, to stabilize
the variance on the fold change from division by small counts.
See the note above for interpretation of log2 fold changes with
respect to the levels of x
.
With the following code chunk, we construct two vectors that give the significant genes with the lowest (most negative) and highest (most positive) log2 fold changes.
with(mcols(y), table(sig=qvalue < .05, sign.lfc=sign(log2FC)) ) sig <- mcols(y)$qvalue < .05 lo <- order(mcols(y)$log2FC * sig) hi <- order(-mcols(y)$log2FC * sig)
Here we print a small table with just the calculated statistics for the large positive log fold change transcripts (up-regulation):
top_up <- mcols(y)[head(hi),] names(top_up) cols <- c("log10mean","log2FC","pvalue","qvalue") print(as.data.frame(top_up)[,cols], digits=3)
Likewise for the largest negative log fold change transcripts (down-regulation):
top_down <- mcols(y)[head(lo),] print(as.data.frame(top_down)[,cols], digits=3)
We can plot the scaled counts for the inferential replicates, and also
group the samples by a covariate, in this case the cell line. The
analysis was paired, so the statistic assessed if the change within
pairs was consistent. Here we plot the 100th top up-regulated
transcript. plotInfReps
also has functionality for plotting
uncertainty in single cell data, as will be covered in a later
section.
plotInfReps(y, idx=hi[100], x="condition", cov="line")
We can make an MA plot, where the transcripts in our FDR set are colored:
plotMASwish(y, alpha=.05)
Using the addIds
function from tximeta, we can easily add gene
symbols. By specifying gene=TRUE
, this will use the gene ID to match
to gene symbols for all of the transcripts.
library(org.Hs.eg.db) y <- addIds(y, "SYMBOL", gene=TRUE)
We can then add gene symbols to our MA plot:
plotMASwish(y, alpha=.05, xlim=c(.5,5.5)) with( subset(mcols(y), qvalue < .05 & abs(log2FC) > 4), text(log10mean, log2FC, SYMBOL, col="blue", pos=4, cex=.7) )
We can also run swish at the gene level. First we summarize all of the
data to the gene level, using the summarizeToGene
function from
tximeta. Again, we rename the object for statistical analysis, and
then we subset to the genes on chromosome 4 for the demonstration.
gse <- summarizeToGene(se) gy <- gse gy <- gy[seqnames(gy) == "chr4",]
Next we can run the same steps as before. Again we set a random seed in order to be able to reproduce exact results in the future:
gy <- scaleInfReps(gy) gy <- labelKeep(gy) gy <- gy[mcols(gy)$keep,] set.seed(1) gy <- swish(gy, x="condition", pair="line")
As before, the number of genes in a 1% FDR set:
table(mcols(gy)$qvalue < .05)
The histogram of p-values:
hist(mcols(y)$pvalue, col="grey")
As before, finding the genes with the most extreme log2 fold change:
with(mcols(gy), table(sig=qvalue < .05, sign.lfc=sign(log2FC)) ) sig <- mcols(gy)$qvalue < .05 glo <- order(mcols(gy)$log2FC * sig) ghi <- order(-mcols(gy)$log2FC * sig)
gtop_up <- mcols(gy)[head(ghi),] print(as.data.frame(gtop_up)[,cols], digits=3) gtop_down <- mcols(gy)[head(glo),] print(as.data.frame(gtop_down)[,cols], digits=3)
We can plot a particular one of these genes:
plotInfReps(gy, idx=ghi[100], x="condition", cov="line")
As expected, the highly up-regulated genes are involved in immune response. Many genes encoding guanylate-binding proteins (GBP) are up-regulated, and these proteins are induced by interferon, produced in response to infection by pathogenic microbes.
We can make an MA plot, where the genes in our FDR set are colored:
plotMASwish(gy, alpha=.05)
Again, using the addIds
function from tximeta, we can easily add
gene symbols to our gene-level expression analysis:
library(org.Hs.eg.db) gy <- addIds(gy, "SYMBOL", gene=TRUE)
We can then add gene symbols to our MA plot:
plotMASwish(gy, alpha=.05, xlim=c(.5,5.5)) with( subset(mcols(gy), qvalue < .05 & abs(log2FC) > 3), text(log10mean, log2FC, SYMBOL, col="blue", pos=4, cex=.7) )
We have added a new function isoformProportions
which can be run
after scaleInfReps
(and optionally after removing genes via
labelKeep
and subsetting the SummarizedExperiment). This function,
isoformProportions
will create a new assay isoProp
from the
scaledTPM counts, containing isoform proportions per gene. The same
procedure will also be applied to all the inferential replicates. Note
that after isoformProportions
the transcripts from single isoform
genes will be removed, and the transcripts will be re-ordered by gene
(alphabetically by gene).
Following this function, running swish
will be equivalent to a test
of differential transcript usage, taking account of the uncertainty in
transcript abundances, as it will look for transcripts where the
isoform proportions change across condition.
# run on the transcript-level dataset iso <- isoformProportions(y) iso <- swish(iso, x="condition", pair="line")
We also provide in swish
methods for testing if a condition effect
varies across a secondary covariate, using matched samples for
condition, or un-matched samples, which we refer to as "interactions"
in the software.
If matched samples are available, we compute the log2 fold change for each pair of samples across condition in the same covariate group, and then we use a Wilcoxon rank sum statistic for comparing the log2 fold changes across the secondary covariate. For permutation significance, the secondary covariate labels of the pairs are permuted. For un-matched samples, multiple random "pseudo-pairs" of samples across condition within the two covariate groups are chosen, and the statistic computed as above, averaging over the random pseudo-pairings. The motivation for the above permutation schemes is to ensure the following condition, that "under the null hypothesis, the likelihood of the data is invariant under these permutations" [@anderson], where our null hypothesis specifically involves the interaction between condition and the secondary covariate.
For the macrophage dataset we have been working with [@alasoo], we have a 2x2 experimental design, with IFN gamma stimulation, Salmonella infection, and both treatments, as well as control samples. We have these four conditions across 6 cell lines from 6 donors (a subset of all the RNA-seq samples available). So we can use the first method described above, where the cell line is used to match samples across condition.
We begin the interaction analysis by now loading in the full set of samples, as before we only loaded the samples for the two group analysis. We then define two new factors indicating IFNg status and Salmonella status.
coldata <- read.csv(file.path(dir, "coldata.csv")) coldata <- coldata[,c(1,2,3,5)] names(coldata) <- c("names","id","line","condition") coldata$files <- file.path(dir, "quants", coldata$names, "quant.sf.gz") se <- tximeta(coldata)
se$ifng <- factor(ifelse( grepl("IFNg",se$condition), "treated","control")) se$salmonella <- factor(ifelse( grepl("SL1344",se$condition), "infected","control")) with(colData(se), table(ifng, salmonella))
We will work with the chromosome 1 transcripts for demonstration:
y2 <- se y2 <- y2[seqnames(y2) == "chr1",]
Our implementation of the interaction design for matched samples takes
into account matched samples within the x
condition, which we will
specify to be the Salmonella infection status. We will specify the
secondary covariate cov
to be the IFN gamma treatment. We will look
for transcripts where the infection response changes based on IFN
gamma treatment.
To perform the analysis, we create a new variable pair
which will
record which samples are related within groups defined by IFN gamma
treatment status.
y2$pair <- factor(y2$line) levels(y2$pair) <- LETTERS[1:6] # simplify names y2$pair <- as.character(y2$pair) y2$pair[y2$ifng == "control"] y2$pair[y2$ifng == "treated"] y2$pair[y2$ifng == "treated"] <- rep(LETTERS[7:12], each=2) y2$pair <- factor(y2$pair) head(table(y2$pair, y2$salmonella))
We now perform swish
analysis, specifying the Salmonella infection
as our main condition, the IFN gamma treatment as the secondary
covariate, and providing the pairing within IFN gamma treatment
groups. We specify interaction=TRUE
to test for differences in
infection response across IFN gamma treatment group.
y2 <- scaleInfReps(y2) y2 <- labelKeep(y2) y2 <- y2[mcols(y2)$keep,] set.seed(1) y2 <- swish(y2, x="salmonella", cov="ifng", pair="pair", interaction=TRUE)
In this case, we appear to have fewer non-null p-values from first impression of the p-value histogram:
hist(mcols(y2)$pvalue, col="grey")
The MA plot shows significant transcripts on either side of
log2FC=0
. Note that the log2 fold change reported is the
difference between the log2 fold change in the IFN gamma treated and
IFN gamma control group. So positive log2FC
in this plot indicates
that the effect is higher with IGN gamma treatment than in absence of
the treatment.
plotMASwish(y2, alpha=.05)
We can plot some of the transcripts with high log fold change difference across IFN gamma treatment group, and which belong to the less than 5% nominal FDR group:
idx <- with(mcols(y2), which(qvalue < .05 & log2FC > 5)) plotInfReps(y2, idx[1], x="ifng", cov="salmonella") plotInfReps(y2, idx[2], x="ifng", cov="salmonella")
We have a separate vignette for allelic expression analysis, either navigate to the allelic vignette on the fishpond website, or the following from the R prompt:
vignette(topic="allelic", package="fishpond")
The allelic analysis methods are described in @wu2022 doi: 10.1101/2022.08.12.503785.
Swish now has methods to compute correlations
("spearman"
or "pearson"
) of a continuous variable x
with the
log counts, and then assess the significance of those correlations
using inferential replicates and permutation tests.
Additionally, one can compute correlations of a covariate cov
with
log fold changes across a pairing variable (where x
labels the
condition for the log fold change and pair
labels the pairs).
The Spearman-based test statistic follows the procedure from the
original method SAMseq that Swish is based upon [@samseq],
e.g. the methods used in that package with a quantitative response
type. See ?swish
and the cor
argument for more details on the
use of correlations within Swish.
For examples of the correlation tests, see the dynamic AI examples in
the "allelic"
fishpond vignette, or there are also some simulated
examples in the test_correlation.R
testing script located in
fishpond's tests/testthat
directory.
The alevin [@alevin] and tximport / tximeta maintainers have
created an efficient format for storing and importing the sparse
scRNA-seq estimated gene counts, inferential mean and
variance data, and optionally the inferential replicate counts. tximeta
will automatically import these matrices if alevin was run using
--numCellBootstraps
(in order to generate inferential variance) and
additionally --dumpFeatures
(in order to dump the inferential
replicates themselves, see below on thoughts on avoiding this step
though).
The storage format for counts, mean, variance, and inferential replicates, involves writing one cell at a time, storing the locations of the non-zero counts, and then the non-zero counts. The matrices are loaded into R sparely using the Matrix package. The storage format is efficient, for example, the estimated counts for the 900 mouse neuron dataset from 10x Genomics takes up 4.2 Mb, the mean/variance matrices take up 8.6 Mb each, and the inferential replicates takes up 72 Mb (20 bootstrap inferential replicates). Hence avoiding writing and importing the inferential replicates themselves, and only using the mean and variance, is desirable.
The swish
and alevin authors have developed a workflow that uses
inferential mean and variance to generate pseudo-inferential
replicates in place of the actual inferential replicates. Storing and
importing only the inferential mean and variance is much more
efficient (dramatically faster load time and less space on disk and in
memory). The faster workflow would then skip --dumpFeatures
when
running alevin, or subsequently use dropInfReps=TRUE
to not load
the inferential replicates into R.
Plotting: To demonstrate how the inferential mean and variance
look across real scRNA-seq data, we load the neurons dataset and
plot the inferential replicate data across cells. First we read in the
counts, in this case using dropInfReps=TRUE
because the directory
includes the actual inferential replicates, not only the mean and
variance. We set skipMeta=TRUE
, although in general you would want
tximeta
to add the gene range information and other metadata if
working with human, mouse, or fruit fly.
dir <- system.file("extdata", package="tximportData") files <- file.path(dir,"alevin/neurons_900_v014/alevin/quants_mat.gz") neurons <- tximeta(files, type="alevin", skipMeta=TRUE, # just for vignette dropInfReps=TRUE, alevinArgs=list(filterBarcodes=TRUE))
We can easily make a SingleCellExperiment object [@Amezquita2020], and plot counts across cluster (here a randomly assigned cluster label). For more details on working with SingleCellExperiment objects, consult the following online book: Orchestrating Single-Cell Analysis with Bioconductor [@Amezquita2020].
library(SingleCellExperiment) sce <- as(neurons, "SingleCellExperiment") sce$cluster <- factor(paste0("cl",sample(1:6,ncol(sce),TRUE))) par(mfrow=c(2,1), mar=c(2,4,2,1)) plotInfReps(sce, "ENSMUSG00000072235.6", x="cluster", legend=TRUE) plotInfReps(sce, "ENSMUSG00000072235.6", x="cluster", reorder=FALSE)
plotInfReps
has a number of options and convenience arguments for
visualizing single cell data. One can:
legend
,reorder
the cells by expression value within cluster,applySF
) (size factor scaling
will use the values in sizeFactors(sce)
or equivalently
mcols(sce)$sizeFactor
),mcols(sce)
to set the main
title,
e.g. mainCol="SYMBOL"
,x
as a numeric covariate (e.g. pseudotime), and use cov
to distinguish groups (e.g. lineage). Points will then be colored by
cov
instead of by discrete x
.See ?plotInfReps
for more description of arguments.
Note that the figures scale to some degree by the number of cells; for example with $n \in [1,150)$ or $[150,400)$, more visual elements per cell will be included:
par(mfrow=c(2,1), mar=c(2,4,2,1)) plotInfReps(sce[,1:50], "ENSMUSG00000072235.6", x="cluster") plotInfReps(sce[,1:150], "ENSMUSG00000072235.6", x="cluster")
Advice on Swish testing: swish
can be run on alevin counts
imported with tximeta
, but there are a few extra steps
suggested. The following does not use evaluated code chunks, but
provides suggestions for how to tailor swish
to single-cell
datasets.
Filter genes: we recommend to filter
genes as the first step, to reduce the size of the data before losing
sparsity on the count matrices (conversion of data to ranks loses data
sparsity inside the swish()
function). One can run labelKeep
therefore before scaleInfReps
. E.g., to remove genes for which there
are not 10 cells with a count of 3 or more:
y <- labelKeep(y, minCount=3, minN=10) y <- y[mcols(y)$keep,] # subset genes
Subset cells: One should also subset to the groups of cells of
interest for differential testing, in order to take up the least
amount of memory when the sparse matrices are converted to dense
matrices. Note that swish
only allows for differential testing of
two groups (although it allows for blocking factors and interaction
tests).
(Slower) With inferential replicates: After one has filtered both genes and cells down to the set that are of interest for differential testing, one can run the following commands, to make the sparse matrices into dense ones, scale the cells, and perform Swish differential expression, however read on for faster suggestions.
assays(y) <- lapply(assays(y), as.matrix) # make dense matrices y <- scaleInfReps(y, lengthCorrect=FALSE, sfFun=sfFun) y <- swish(y, x="condition")
Size factor function: Note that scaleInfReps
has an argument
sfFun
which allows the user to provide their own size factor
calculation function. We have found that calculateSumFactors
[@Lun2016] in the scran package [@scran] works well for computing
size factors. sfFun
should be specified as a function that returns a
vector of size factors, or a numeric vector of the size factors
themselves.
(Faster) Without inferential replicates: The following workflow
can be used in the case that assayNames(y)
only contains counts,
mean, and variance, which is much faster by avoiding writing/importing
inferential replicates. We first generate pseudo-inferential
replicates from inferential mean and variance matrices before running
scaleInfReps
from the code chunk above. The generation of
pseudo-inferential replicates is described in @compression.
The following function can be used just before scaleInfReps
:
y <- makeInfReps(y, 20)
There is alternatively a scheme for splitting the operation of
generating (dense) inferential replicate matrices across multiple
jobs, and running swish
across batches of genes at a time.
This job-splitting procedure is also described and benchmarked in
@compression. This helps to reduce the total memory used, in the case
that the counts, mean, and variance matrices are too large to be made
dense altogether. This scheme involves 1) splitting the object into
smaller pieces, written out to .rds
files, 2) running swish
as a
distributed job, 3) reading the .csv
output back into R. The
following code chunk would start with a 'y' with sparse matrix assays,
and without ever running scaleInfReps
(it is run within the
distributed job, and with lengthCorrect=FALSE
by default).
library(SingleCellExperiment) y <- as(y, "SingleCellExperiment") # then, after filtering genes and cells... # compute and store sizeFactors calculated over all genes y <- scran::computeSumFactors(y) # split swish objects into 8 RDS files: splitSwish(y, nsplits=8, prefix="swish", snakefile="Snakefile") # now, run snakemake from command line # after finished, results back into R: y <- addStatsFromCSV(y, "summary.csv")
The splitSwish
function will write out a Snakefile
that can be
used with snakemake in
order to run distributed swish
jobs in an easily customized
workflow. Then the addStatsFromCSV
will read in and attach the
results to the original object. This final alternative avoids
generating dense matrices until they have been split into nsplits
pieces, and so can be used to reduce the memory requirements for the
individual jobs. If one is new to running snakemake
, it is
recommended to first run with the flags -np
as a "dry-run" to see
the operations that will be performed. The swish
command can be
customized in the swish
rule in the Snakefile
, e.g. to control for
batches or test for interactions.
There are currently seven types of analysis supported by swish
:
This vignette demonstrated the third in this list, but the others
can be run by either not specifying any additional covariates, or by
specifying a batch variable with the argument cov
instead of pair
.
The two interaction tests can be run by specifying interaction=TRUE
and providing x
, cov
, and optionally pair
. The last two tests
can be run using the cor
argument
(see Correlation test section in this vignette).
We have two recommended approaches for using swish
in combination
with estimated batch effects, e.g. factors of unwanted variation
estimated by RUVSeq or surrogate variables estimated by SVA
(without loss of generality, we will call these batch factors).
First, examine a plot of the estimated batch factors, e.g. a stripplot
(1 factor) or scatterplot of pairs (2 or more factors).
kmeans
to assign a discrete estimated batch to each cluster. If
the number of samples per condition group per batch is 2 or more,
then one can use the cluster
output of the kmeans
function as
input to the cov
argument of swish
. This will then perform a
stratified Mann-Whitney Wilcoxon test.For the second approach, one can directly scale the inferential counts
using limma and removeBatchEffect
.
Here a demonstration using simulated data:
set.seed(1) y <- makeSimSwishData()
First we perform standard scaling for sequencing depth and labeling of
feautures with too few counts. We save the mean of scaled inferential
replicates using saveMeanScaled=TRUE
as we will use this to estimate
the batch factors.
y <- scaleInfReps(y, saveMeanScaled=TRUE) tail(assayNames(y),4) # 'meanScaled' assay y <- labelKeep(y) y <- y[mcols(y)$keep,]
Next estimate the batch factors on the mean of scaled inferential count matrices.
norm_cts_for_batch <- assay(y, "meanScaled") # use batch factor estimation method of your choosing # ...
Suppose we estimate two batch factors, w1
and w2
, now we remove
the variation from each inferential replicate associated with these,
using limma's removeBatchEffect
.
w1 <- runif(ncol(y)) # here simulated w1, use real instead w2 <- runif(ncol(y)) # here simulated w2, use real instead W <- data.frame(w1, w2) infRepIdx <- grep("infRep",assayNames(y),value=TRUE) nreps <- length(infRepIdx)
The following loads limma and removes batch associated variation on
the log2 scale (a pseudocount is added to avoid -Inf
values).
suppressPackageStartupMessages(library(limma)) mm <- model.matrix(~condition, colData(y)) pc <- .1 for (k in seq_len(nreps)) { logInfRep <- log(assay(y, infRepIdx[k]) + pc) logInfRep <- limma::removeBatchEffect( logInfRep, covariates=W, design=mm) assay(y, infRepIdx[k]) <- exp(logInfRep) }
Now we run swish
as usual:
y <- swish(y, x="condition")
While we have assessed this approach with a small number of estimated nuisance covariates, note that with many covariates this approach may lead to inflation of test statistics.
While tximeta
is the safest way to provide the correct input to
swish
, all that swish
requires for running is a
SummarizedExperiment object with the following assays: counts
,
length
, and infRep1
, infRep2
, ..., infRepN
, where N
is
simply the number of Gibbs samples or boostraps samples, e.g. 20 in
the examples above. The counts and inferential replicates are
estimated counts from a quantification method, either at the
transcript level or summed to the gene level (simple sum). These
counts sum up to the (mapped) library size for each sample. It is
assumed that the length
matrix gives the effective lengths for each
transcript, or average transcript length for each gene as summarized
by the functions in tximeta
/tximport
. If the counts should not be
corrected for effective length (e.g. 3' tagged RNA-seq), then
lengthCorrect=FALSE
should be specified when running
scaleInfReps
.
Note on simulation: it is difficult to simulate inferential uncertainty
in a realistic manner without construction of reads from transcripts,
using a method like polyester. Constructing reads from the reference
transcriptome or a sample-specific transcriptome naturally produces
the structure of read-assignment inferential uncertainty that swish
and other methods control for in real RNA-seq data.
As with SAMseq and SAM, swish
makes use of the permutation
plug-in approach for q-value calculation. swish
calls the empPvals
and qvalue
functions from the qvalue package to calculate the
q-values (or optionally similar functions from the samr package).
If we plot the q-values against the statistic, or against the log2
fold change, one can see clusters of genes with the same q-value
(because they have the same or similar statistic). One consequence of
this is that, in order to rank the genes, rather than ranking directly
by q-value, it makes more sense to pick a q-value threshold and then
within that set of genes, to rank by the log fold change, as shown
above when the code chunk has log2FC * sig
.
gres <- mcols(gy)[mcols(gy)$keep,] min(gres$qvalue, na.rm=TRUE) # min nominal FDR is not 0 with(gres, plot(stat, -log10(qvalue))) with(gres, plot(log2FC, -log10(qvalue))) abline(v=0, col="red") with(gres, plot(log2FC, -log10(qvalue), xlim=c(-1.5,1.5), ylim=c(0,1.5))) abline(v=0, col="red")
In the Swish paper, we describe a statistic, InfRV, which is useful
for categorizing groups of features by their inferential uncertainty.
Note that InfRV is not used in the swish
method, but only for
visualization in the paper. Here we show how to compute and plot the
InfRV:
y3 <- se y3 <- y3[seqnames(y3) == "chr4",] y3 <- y3[,y3$condition %in% c("naive","IFNg")] y3 <- labelKeep(y3) y3 <- y3[mcols(y3)$keep,] y3 <- computeInfRV(y3) mcols(y3)$meanCts <- rowMeans(assays(y3)[["counts"]]) with(mcols(y3), plot(meanCts, meanInfRV, log="xy")) hist(log10(mcols(y3)$meanInfRV), col="grey50", border="white", breaks=20, xlab="mean InfRV", main="Txp-level inferential uncertainty")
If you ran Salmon in alignment mode, then a Salmon index was not
used. Without a Salmon index, there is not a checksum that tximeta
uses to identify the transcriptome. You can specify skipMeta=TRUE
to
avoid tximeta attempting to match on the transcriptome in this case.
If you want to combine transcripts to gene level (or some other level
of aggregation), you can set txOut=FALSE, tx2gene=tx2gene
when
calling tximeta
and it will pass these arguments to tximport when
importing the counts and inferential replicates.
The following diagrams describe the permutation schemes used for the
interaction designs implemented in swish
. The case with matched
samples (pair indicated by number, primary condition indicated by
color, the vertical line separating the pairs by secondary covariate):
n <- 8 condition <- rep(1:2,length=2*n) group <- rep(1:2,each=n) pair <- rep(c(1:n),each=2) cols <- c("dodgerblue","goldenrod4") plot(1:(2*n), rep(0,2*n), ylim=c(-.5,3.5), type="n", xaxt="n", yaxt="n", xlab="samples", ylab="permutation") abline(v=8.5, lty=2) axis(2, 0:3, c("orig",1:3), las=2) text(1:(2*n), rep(0,2*n), pair, col=cols[condition], cex=2) set.seed(1) for (i in 1:3) { perms <- rep(2*sample(n,n),each=2) - rep(1:0,length=2*n) text(1:(2*n), rep(i,2*n), pair[perms], col=cols[condition[perms]], cex=2) }
The case without matched samples (sample indicated by letter, primary condition indicated by color, the vertical line separating the samples by secondary covariate). Here multiple random pseudo-pairs are chosen across condition. The permutation scheme ensures that LFCs are always calculated between samples from the same covariate group.
n <- 8 condition <- rep(c(1:2,1:2),each=n/2) group <- rep(1:2,each=n) id <- LETTERS[1:(2*n)] cols <- c("dodgerblue","goldenrod4") plot(1:(2*n), rep(0,2*n), ylim=c(-.5,3.5), type="n", xaxt="n", yaxt="n", xlab="samples", ylab="permutation") abline(v=8.5, lty=2) axis(2, 0:3, c("orig",1:3), las=2) text(1:(2*n), rep(0,2*n), id, col=cols[condition], cex=2) set.seed(3) for (i in 1:3) { id.perms <- character(2*n) grp1 <- id[group==1] grp2 <- id[group==2] id.perms[c(1:4,9:12)] <- sample(id[condition==1],n) idx1 <- id.perms[c(1:4,9:12)] %in% grp1 id.perms[c(5:8,13:16)][idx1] <- sample(id[condition==2 & group==1],sum(idx1)) idx2 <- id.perms[c(1:4,9:12)] %in% grp2 id.perms[c(5:8,13:16)][idx2] <- sample(id[condition==2 & group==2],sum(idx2)) text(1:(2*n), rep(i,2*n), id.perms, col=cols[condition], cex=2) } arrows(3,1.5,1.3,1.15,length=.1) arrows(3,1.5,4.7,1.15,length=.1)
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.