knitr::opts_chunk$set( cache = FALSE, fig.width = 9, message = FALSE, warning = FALSE)
This document provides the detailed code required to replicate case study 2 discussed in Gao et al. (2023). Methods in Ecology and Evolution. DOI: 10.1111/2041-210X.14129
This replication study has been implemented with phyloseq. The TreeSE package has been since then upgraded to use the TreeSE data container.
For general instructions and examples on using the miaSim package tools, see the vignette. miaSim
implements tools for microbiome data simulation based on different ecological modeling assumptions. These can be used to simulate species abundance matrices, including time series. For a detailed function documentation, see the function reference page
The aim of this case study is to design and demonstrate the existence of nutrient concentration threshold which limits the beta-diversity of communities.
To fulfill this aim, we designed a gradient of environments, as well as a gradient of communities.
Load dependencies
library(ggplot2) library(vegan) library(reshape2) library(umap) library(miaSim) library(philentropy) library(ape) library(cluster)
#' Generate multiple simulations and store them in a list #' #' This function is useful when generating simulations with different parameters #' or simulating multiple instances to evaluate stochasticity therein. #' #' @param model Character: name of the model to use, must be one of #' "simulateConsumerResource", "simulateGLV", "simulateHubbellRates", and #' "simulateStochasticLogistic" #' @param params_list List: a list containing all parameters used in the #' aforementionned called model #' @param param_iter List of parameters to overwrite in different simulations. #' If NULL, then simulate different instances using the same set of parameters. #' (default: \code{param_iter = NULL}) #' @param n_instances Integer: number of instances to generate #' (default: \code{n_instances = 1}) #' @param t_end Numeric: end time of the simulation. If not identical with t_end #' in params_list, then it will overwrite t_end in each simulation #' (default: \code{t_end = 1000}) #' @return A list containing multiple simulating results #' @examples #' #' params <- list( #' n_species = 10, #' n_resources = 5, #' E = randomE( #' n_species = 10, n_resources = 5, #' mean_consumption = 1, mean_production = 3 #' ), #' x0 = rep(0.001, 10), #' resources = rep(1000, 5), #' monod_constant = matrix(rbeta(10 * 5, 10, 10), nrow = 10, ncol = 5), #' inflow_rate = .5, #' outflow_rate = .5, #' migration_p = 0, #' stochastic = TRUE, #' t_start = 0, #' t_end = 20, #' t_store = 100, #' growth_rates = runif(10), #' norm = FALSE #' ) #' #' # Recommended standard way to generate a set of n simulations (n=2 here) from a given model #' # simulations <- lapply(seq_len(2), function (i) {do.call(simulateConsumerResource, params)}) #' #' @export generateSimulations <- function(model, params_list, param_iter = NULL, n_instances = 1, t_end = 1000) { simulations <- list() if (params_list$t_end != t_end) { warning("t_end in the variable list not equals to t_end") params_list$t_end <- t_end } if (is.null(param_iter)) { for (i in seq_len(n_instances)) { # print(paste(i, "of", n_instances,"instances in one set of params.")) simulation <- do.call(model, params_list) # simulation$matrix[,colnames(simulation$model)!= "time"] simulations[[length(simulations) + 1]] <- simulation } return(simulations) } else { if (!all(names(param_iter) %in% names(params_list))) { stop( "not recognized parameter(s) :", names(param_iter)[!names(param_iter) %in% names(params_list)] ) } if (length(unique(unlist(lapply(param_iter, length)))) > 1) { stop("parameters in list param_iter are not of the same length.") } simulations_full <- list() for (i in seq_along(param_iter[[1]])) { # print(paste(i, "of", length(param_iter[[1]]), "sets of params.")) params_list_local <- utils::modifyList( params_list, lapply(param_iter, "[[", i) ) simulations_local <- generateSimulations( model, params_list_local, param_iter = NULL, n_instances = n_instances, t_end = t_end ) simulations_full <- append(simulations_full, simulations_local) } return(simulations_full) } }
(This batch of simulations is time-consuming. To reduce the calculation burden, we decreased the numbers of environments, resources, and communities from the original 10 to 5, and made other minor modifications.)
Set random seed
set.seed(42)
Set initial shared parameters
n_species <- 5 n_resources <- 5 E <- randomE(n_species, n_resources) growth_rates <- runif(n_species) monod_constant <- matrix(rbeta(n_species*n_resources, 10,10),nrow=n_species, ncol=n_resources) t_store <- 50 n.instances <- 1 # no stochastic process: no need to repeat
Define generating function. This function generates a data frame, where each row is arranged in an increasing dissimilarity to the first row.
gradient.df.generator <- function(n_row, n_col, density_row, max_gradient, error_interval){ list_initial <- list() dissimilarity.gradient <- seq(from = 0, to = max_gradient, length.out = n_row) for (i in seq_len(n_row)){ print(i) if (i == 1){ row_temp <- rbeta(n_col, 1, 1/n_col) col_to_remove <- sample(x = seq_len(n_col), size = n_col-n_col*density_row) row_temp[col_to_remove] <- 0 list_initial[[i]] <- row_temp } else { while (length(list_initial) < i) { row_temp <- rbeta(n_col, 1, 1/n_col) col_to_remove <- sample(x = seq_len(n_col), size = n_col-n_col*density_row) row_temp[col_to_remove] <- 0 diff_temp <- abs(vegdist(rbind(list_initial[[1]], row_temp), method = "bray") - dissimilarity.gradient[i]) if (diff_temp < error_interval) { list_initial[[i]] <- row_temp } } } } dataframe_to_return <- as.data.frame(t(matrix(unlist(list_initial), ncol = n_row))) return(dataframe_to_return) }
Generate communities
n.community <- 5 # you can also try 20 or even 50. density.community <- 0.8 set.seed(42) community.initial.df <- gradient.df.generator(n_row = n.community, n_col = n_species, density_row = density.community, max_gradient = 0.7, error_interval = 0.1) dist.community.initial.df <- vegdist(community.initial.df, method = "bray")
Load plotting functions
makePlot <- function(out_matrix, title = "abundance of species by time", obj = "species", y.label = "x.t"){ df <- as.data.frame(out_matrix) dft <- melt(df, id="time") names(dft)[2] = obj names(dft)[3] = y.label lgd = ncol(df)<= 20 ggplot(dft, aes_string(names(dft)[1], names(dft)[3], col = names(dft)[2])) + geom_line(show.legend = lgd, lwd=0.5) + ggtitle(title) + theme_linedraw() + theme(plot.title = element_text(hjust = 0.5, size = 14)) } makePlotRes <- function(out_matrix, title = "quantity of compounds by time"){ df <- as.data.frame(out_matrix) dft <- melt(df, id="time") names(dft)[2] = "resources" names(dft)[3] = "S.t" lgd = ncol(df)<= 20 ggplot(dft, aes(time, S.t, col = resources)) + geom_line(show.legend = lgd, lwd=0.5) + ggtitle(title) + theme_linedraw() + theme(plot.title = element_text(hjust = 0.5, size = 14)) } makeHeatmap <-function(matrix.A, title = "Consumption/production matrix", y.label = 'resources', x.label = 'species', midpoint_color = NULL, lowColor = "red", midColor = "white", highColor = "blue"){ df <- melt(t(matrix.A)) if (is.null(midpoint_color)) { midpoint_color <- 0 } names(df)<- c("x", "y", "strength") df$y <- factor(df$y, levels=rev(unique(sort(df$y)))) fig <- ggplot(df, aes(x,y,fill=strength)) + geom_tile() + coord_equal() + theme(axis.title = element_blank()) + scale_fill_gradient2('strength', low = lowColor, mid = midColor, high = highColor, midpoint = midpoint_color)+ theme_void() + ggtitle(title) if (ncol(matrix.A)<=10 & nrow(matrix.A)<=10){ fig <- fig + geom_text(aes(label = round(strength, 2))) } else if (ncol(matrix.A)<=15 & nrow(matrix.A)<=15){ fig <- fig + geom_text(aes(label = round(strength, 1))) } else { fig <- fig } fig <- fig + labs(x = x.label, y = y.label)+ theme_linedraw() + theme(plot.title = element_text(hjust = 0.5, size = 14), axis.text.x = element_text( angle = 90)) if (nrow(matrix.A) >= 20){ # too many species fig <- fig + theme( axis.title.y=element_blank(), axis.text.y=element_blank(), axis.ticks.y=element_blank(), ) } if (ncol(matrix.A) >= 20){ # too many resources fig <- fig + theme( axis.title.x=element_blank(), axis.text.x=element_blank(), axis.ticks.x=element_blank() ) } fig } makeUMAP <- function(matrix, n_neighbors=10, min_dist=0.1, gradient=NULL, gradient_title = 'gradient', group=NULL, group2=NULL){ custom.config = umap.defaults custom.config$n_neighbors = n_neighbors custom.config$min_dist = min_dist df <- as.data.frame(umap(matrix,config = custom.config)$layout) df$gradient <- gradient if (is.null(gradient)){ df$gradient <- 1 } colnames(df) = c('UMAP_2', 'UMAP_1', gradient_title) if (is.null(group)){ ggplot(df, aes_string('UMAP_2', 'UMAP_1', color=gradient_title)) + geom_point() + scale_color_gradient(low="blue", high="red") } else { if (is.null(group2)){ ggplot(df, aes_string('UMAP_2', 'UMAP_1', color=gradient_title)) + geom_point(aes(color = group)) + theme_bw() } else { ggplot(df, aes_string('UMAP_2', 'UMAP_1', color=gradient_title)) + geom_point(aes(color = group, shape = group2)) + theme_bw() } } } makeHeatmap(as.matrix(dist.community.initial.df), title = "dissimilarity matrix", x.label = "community.1", y.label = "community.2") makeUMAP(matrix = community.initial.df, n_neighbors = 5, group = factor(seq_len(n.community)), gradient_title = "community")
Initialize shared parameters
crm_params <- list( n_species = n_species, n_resources = n_resources, x0 = NULL, E = E, resources = rep(1,n_resources), monod_constant = monod_constant, migration_p = 0, t_start = 0, t_end = 50, t_step = 1, t_store = t_store, growth_rates = growth_rates)
Generate resource gradients
resourceConcentration <- 10^seq(0,4,1) # 1 to 10000 n.medium <- 5 density.medium <- 0.8 set.seed(42) resource.initial.df <- gradient.df.generator(n_row = n.medium, n_col = n_resources, density_row = density.medium, max_gradient = 0.7, error_interval = 0.1)
crmExample <- simulateConsumerResource( n_species = n_species, n_resources = n_resources, resources = as.numeric(resourceConcentration[3]*resource.initial.df[1,]), t_end = 50, t_step = 1, t_store = 50) #makePlot(crmExample$matrix) #makePlotRes(crmExample$resources)
Generate simulations and store the final community in community.simulation. In this step, the final relative abundance table is basisComposition_prop
'set.seed(42) library(miaSim) community.simulation <- list() counter_i <- 1 for (resConc in resourceConcentration) { for (medium in seq_len(n.medium)){ crm_params$resources <- as.numeric(resource.initial.df[medium,]*resConc) paramx0 <- as.list(as.data.frame(t(community.initial.df))) crm_param_iter <- list(x0 = paramx0) print(paste("resConc", resConc, "medium", medium)) crmMoments <- generateSimulations(model = "simulateConsumerResource", params_list = crm_params, param_iter = crm_param_iter, n_instances = n.instances, t_end = 50) community.simulation[[counter_i]] <- as.data.frame(do.call(rbind, lapply(crmMoments, getCommunity))) counter_i <- counter_i +1 } } basisComposition <- do.call(rbind.data.frame, community.simulation) rm(counter_i, community.simulation) basisComposition_prop <- basisComposition / rowSums(basisComposition)'
Make UMAP plots.
In this step, plot result is stored in umap_CRM_gradient_plot, and this is visualized in different facets.
concentration <- as.factor(rep(resourceConcentration, each = n.medium*n.community)) medium <- as.factor(rep(seq_len(n.medium), each = n.community ,times = length(resourceConcentration) )) community <- as.factor(rep(seq_len(n.community), times = length(resourceConcentration)*n.medium)) #plot the result in a UMAP space #makeUMAP(basisComposition, group = medium, group2 = concentration, gradient_title = 'Medium') #umap_CRM_gradient <- umap(basisComposition_prop) # umap_CRM_gradient <- umap(basisComposition) #umap_CRM_coor <- as.data.frame(umap_CRM_gradient$layout) #colnames(umap_CRM_coor) <- c("UMAP_1", "UMAP_2") 'umap_CRM_coor <- cbind(umap_CRM_coor, concentration, medium, community) umap_CRM_gradient_plot <- ggplot(umap_CRM_coor, aes(UMAP_1, UMAP_2, # alpha = concentration, color = medium, shape = community)) + geom_point() + # scale_shape_manual(values = c(0, 1, 2, 5, 6, 8, 15, 16, 17, 18)) + scale_shape_manual(values = seq(0, n.community -1 ,1)) + scale_alpha_manual(values = seq(0.25, 1, 0.75/(length(resourceConcentration)-1))) + theme_bw()'
In this part, different visualization of results demonstrate (in various facets) the gradual change of communities' beta diversity. The first figure indicates that the initial community composition is more important than the combinations of initial available resources.
The first sub-figure in the second figure demonstrates that in an oligotrophic (less available nutrients) environment, communities won't change much in a given time, whilst the last two sub-figures resemble each other, implying that the nutrient is no longer the limiting factor of the beta-diversity of the community. This pattern is further displayed in the following "curve plot".
In the third figure, the second and the fourth community always stays more similar, despite their initial dissimilarity, indicating that they might belong to one community type. This can be validated by input 20 or even 50 as n.community in this case study: communities turns into clusters in each sub-figures.
print(umap_CRM_gradient_plot) print(umap_CRM_gradient_plot + facet_grid(concentration ~ ., labeller = label_both)) print(umap_CRM_gradient_plot + facet_grid(medium ~ concentration, labeller = label_both)) print(umap_CRM_gradient_plot + facet_grid(community ~ concentration, labeller = label_both)) print(umap_CRM_gradient_plot + facet_grid(community ~ medium, labeller = label_both))
"Saturation curve" of average beta-diversity between communities with community 1
In this part, we'd like to demonstrate that the average distance from other communities to community 1 will reach to a threshold of nutrients, after which the average distance won't increase along with the total concentration of nutrients.
To do so, we first define a function calculating the mean distance to the first community.
Construct a function taking umap_CRM_coor as df and return the mean distance
average_distance <- function(df, res_conc_type, com_type, method = "euclidean"){ sub_df <- df[df$concentration == res_conc_type & df$community == com_type,] combines <- combn(sub_df$medium, 2) distances <- NULL for (i in seq_len(ncol(combines))) { distances[i] <- dist(sub_df[combines[,i], c(1, 2)]) } # print(distances) return(mean(distances)) } # average_distance(umap_CRM_coor, 1, 2)
Constructing dataframe to save results
distance_saturation_data <- data.frame(concentration = integer(), community = integer(), average_distance = numeric()) for (res_conc_type in unique(umap_CRM_coor$concentration)){ for (com_type in unique(umap_CRM_coor$community)){ ave_dist <- average_distance(umap_CRM_coor, res_conc_type, com_type) distance_saturation_data[nrow(distance_saturation_data)+1,] <- c(res_conc_type, com_type, ave_dist) } } # View(distance_saturation_data) distance_saturation_data$average_distance <- as.numeric(distance_saturation_data$average_distance) distance_saturation_data$concentration <- as.factor(distance_saturation_data$concentration) distance_saturation_data$community <- as.factor(distance_saturation_data$community) distance_saturation_data_plot <- ggplot(distance_saturation_data, aes(concentration, average_distance, color = community, group = community)) + geom_line() + geom_point() + scale_shape_manual(values = c(0, 1, 2, 5, 6, 8, 15, 16, 17, 18)) + labs(x = "resource concentration", y = "average distance between communities in UMAP") + theme_bw()
Visualize the distance plot
print(distance_saturation_data_plot) # ggsave(paste0("CRMgradient_distance_curve_mod.pdf"), plot = distance_saturation_data_plot , dpi = 300, width = 12, height = 10, units = "cm", scale = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.