#' @title rpa.summarize
#' @description RPA summarization.
#' @param dat Original data: probes x samples.
#' @param affinities Probe affinities
#' @param variances Probe variances
#' @param summarize.with.affinities Use affinity estimates in probe summarization step. Default: FALSE.
#' @details Summarizes the probes in a probe set according to the RPA model based on the given affinity and variance parameters.
#'
#' @return A vector. Probeset-level summary signal.
#'
#' @seealso rpa
#' @export
#'
#' @references See citation("RPA")
#' @author Leo Lahti \email{leo.lahti@@iki.fi}
#' @examples # res <- rpa.summarize(dat, affinities, variances, summarize.with.affinities = FALSE)
#' @keywords utilities
rpa.summarize <- function (dat, affinities, variances, summarize.with.affinities = FALSE) {
# FIXME: add hyperparameter estimation for the case where
# affinities & variances are NULL
# Impute if there are missing values
dat <- rpa.impute(dat)
if ( is.null(colnames(dat)) ) { colnames(dat) <- 1:ncol(dat) }
# Accommodate single-probe probesets
if (nrow(dat) == 1) {
mu <- as.vector(dat)
mu <- mu - affinities
names(mu) <- colnames(dat)
} else {
# Remove affinities from raw signal before summarization
# Since probe-specific variance is now known (from the estimation above),
# the probeset-level signal
# estimate is obtained as a weighted sum of the
# probes, weighted by the probe-specific variances
if (summarize.with.affinities) {
mu <- d.update.fast(dat - affinities, variances)
} else {
mu <- d.update.fast(dat, variances) # ignore affinities in summarization
}
}
mu
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.