R/frma.R

Defines functions frma

Documented in frma

frma <- function(object, background="rma", normalize="quantile", summarize="robust_weighted_average", target="probeset", 
                 input.vecs=NULL, output.param=NULL, verbose=FALSE){

  ## check input
  if(!class(object) %in% c("AffyBatch", "ExonFeatureSet", "GeneFeatureSet")) stop("object must be of class AffyBatch, ExonFeatureSet, or GeneFeatureSet.")

  if(class(object)=="ExonFeatureSet") target <- match.arg(target, c("core", "full", "extended", "probeset"))
  if(class(object)=="GeneFeatureSet") target <- match.arg(target, c("core", "probeset"))
  if(verbose & class(object)=="ExonFeatureSet") message(paste("Exon summarization at ", target, " level.\n", sep=""))
  if(verbose & class(object)=="GeneFeatureSet") message(paste("Gene summarization at ", target, " level.\n", sep=""))

  if(!background %in% c("none", "rma")) stop("background must be either none or rma")
  if(!normalize %in% c("none", "quantile")) stop("normalize must be either none or quantile")
  if(!summarize %in% c("median_polish", "average", "median", "weighted_average", "robust_weighted_average", "random_effect")){
    stop("summarize must be one of: median_polish, average, median, weighted_average, robust_weighted_average, random_effect")
  }

  if(summarize=="random_effect" & class(object)=="ExonFeatureSet") stop("Summarization method random_effect is not implemented for ExonFeatureSet objects.")
  if(summarize=="random_effect" & class(object)=="GeneFeatureSet") stop("Summarization method random_effect is not implemented for GeneFeatureSet objects.")
  
  ## determine data platform
  if(class(object)=="AffyBatch"){
    cdfname <- cleancdfname(cdfName(object))
    tmp <- gsub("cdf","",cdfname)
    platform <- gsub("..entrezg", "", tmp)
    vecdataname <- paste(tmp, "frmavecs", sep="")
  }
  if(class(object)%in%c("ExonFeatureSet","GeneFeatureSet")){
    cdfname <- annotation(object)
    platform <- gsub("pd.", "", cdfname, fixed=TRUE)
    vecdataname <- paste(platform, "frmavecs", sep="")
  }
  
  ## load frmavecs unless supplied as input 
  if(is.null(input.vecs)){
    pkg <- paste(platform, "frmavecs", sep="")
    require(pkg, character.only=TRUE, quietly=TRUE) || stop(paste(pkg, "package must be installed first"))
    data(list=eval(vecdataname))
    input.vecs <- get(vecdataname)
  } else {
    if(summarize=="random_effect" & (any(input.vecs$probeVarBetween==0) | any(input.vecs$probeVarWithin==0))){
      stop("If summarize method is random_effect then probeVarBetween and probeVarWithin must be greater than zero for all probes.")
    }    
  }
  
  ## call the appropriate frma worker function based on the object class
  if(class(object)=="AffyBatch"){
    cdfname <- cleancdfname(cdfName(object))
    platform <- gsub("cdf","",cdfname)
    output <- frmaAffyBatch(object, background, normalize, summarize, input.vecs, output.param, verbose) 
  }
  if(class(object)%in%c("ExonFeatureSet","GeneFeatureSet")){
    cdfname <- annotation(object)
    platform <- gsub("pd.","",cdfname,fixed=TRUE)
    output <- frmaFeatureSet(object, background, normalize, summarize, target, input.vecs, output.param, verbose)
  }

  ## create a new ExpressionSet or frmaExpressionSet to hold the output
  if(is.null(output.param)){
    if(is.null(output$stderr)){
      e <- new("ExpressionSet", assayData=assayDataNew(exprs=output$exprs), annotation=platform, phenoData=phenoData(object), experimentData=experimentData(object))
    } else{
      e <- new("ExpressionSet", assayData=assayDataNew(exprs=output$exprs, se.exprs=output$stderr), annotation=platform, phenoData=phenoData(object), experimentData=experimentData(object))
    }
  } else {
    if(is.null(output$stderr)){
      e <- new("frmaExpressionSet", assayData=assayDataNew(exprs=output$exprs), annotation=platform, phenoData=phenoData(object), experimentData=experimentData(object))
    } else{
      e <- new("frmaExpressionSet", assayData=assayDataNew(exprs=output$exprs, se.exprs=output$stderr), annotation=platform, phenoData=phenoData(object), experimentData=experimentData(object))
    }
    if("weights" %in% output.param) w <- output$weights else w <- matrix(nrow=0, ncol=0)
    if("residuals" %in% output.param) r <- output$residuals else r <- matrix(nrow=0, ncol=0)
    if("random_effects" %in% output.param) g <- output$gammas else g <- matrix(nrow=0, ncol=0)
    weights(e) <- w
    residuals(e) <- r
    randomeffects(e) <- g
  }

  return(e)
}
mccallm/frma documentation built on April 20, 2021, 6:22 p.m.