## ----setup, include=FALSE-----------------------------------------------------
library(rTASSEL)
knitr::opts_chunk$set(
fig.path='figure/graphics-',
cache.path='cache/graphics-',
fig.align='center',
external=TRUE,
echo=TRUE,
warning=FALSE
# fig.pos="H"
)
## ---- eval=FALSE, echo=TRUE---------------------------------------------------
# options(java.parameters = c("-Xmx<memory>", "-Xms<memory>"))
## ---- eval=FALSE, echo=TRUE---------------------------------------------------
# rTASSEL::startLogger(fullPath = NULL, fileName = NULL)
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
# Load hapmap data
genoPathHMP <- system.file(
"extdata",
"mdp_genotype.hmp.txt",
package = "rTASSEL"
)
genoPathHMP
# Load VCF data
genoPathVCF <- system.file(
"extdata",
"maize_chr9_10thin40000.recode.vcf",
package = "rTASSEL"
)
genoPathVCF
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
# Load in hapmap file
tasGenoHMP <- rTASSEL::readGenotypeTableFromPath(
path = genoPathHMP
)
# Load in VCF file
tasGenoVCF <- rTASSEL::readGenotypeTableFromPath(
path = genoPathVCF
)
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
tasGenoHMP
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
class(tasGenoHMP)
slotNames(tasGenoHMP)
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
tasGenoHMP@jGenotypeTable
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
# Read from phenotype path
phenoPath <- system.file("extdata", "mdp_traits.txt", package = "rTASSEL")
phenoPath
# Load into rTASSEL `TasselGenotypePhenotype` object
tasPheno <- rTASSEL::readPhenotypeFromPath(
path = phenoPath
)
# Inspect object
tasPheno
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
# Create phenotype data frame
phenoDF <- read.table(phenoPath, header = TRUE)
colnames(phenoDF)[1] <- "Taxon"
# Inspect first few rows
head(phenoDF)
# Load into rTASSEL `TasselGenotypePhenotype` object
tasPhenoDF <- rTASSEL::readPhenotypeFromDataFrame(
phenotypeDF = phenoDF,
taxaID = "Taxon",
attributeTypes = NULL
)
# Inspect new object
tasPhenoDF
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
tasGenoPheno <- rTASSEL::readGenotypePhenotype(
genoPathOrObj = tasGenoHMP,
phenoPathDFOrObj = tasPheno
)
tasGenoPheno
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
tasGenoPhenoDF <- rTASSEL::readGenotypePhenotype(
genoPathOrObj = genoPathHMP,
phenoPathDFOrObj = phenoDF,
taxaID = "Taxon",
attributeTypes = NULL
)
tasGenoPhenoDF
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
## Get toy kinship data from package ----
kinshipPath <- system.file(
"extdata",
"mdp_kinship.txt",
package = "rTASSEL"
)
## Read ----
rTASSEL::readTasselDistanceMatrix(kinshipPath)
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
tasSumExp <- rTASSEL::getSumExpFromGenotypeTable(
tasObj = tasGenoPheno
)
tasSumExp
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
SummarizedExperiment::colData(tasSumExp)
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
SummarizedExperiment::rowData(tasSumExp)
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
SummarizedExperiment::rowRanges(tasSumExp)
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
tasExportPhenoDF <- rTASSEL::getPhenotypeDF(
tasObj = tasGenoPheno
)
tasExportPhenoDF
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
tasGenoPhenoFilt <- rTASSEL::filterGenotypeTableSites(
tasObj = tasGenoPheno,
siteMinCount = 150,
siteMinAlleleFreq = 0.05,
siteMaxAlleleFreq = 1.0,
siteRangeFilterType = "none"
)
tasGenoPhenoFilt
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
tasGenoPheno
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
tasKin <- rTASSEL::kinshipMatrix(tasObj = tasGenoPheno)
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
tasDist <- rTASSEL::distanceMatrix(tasObj = tasGenoPheno)
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
tasKin
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
library(magrittr)
tasKin %>% colnames() %>% head()
tasKin %>% rownames() %>% head()
tasKin %>% dim()
tasKin %>% nrow()
tasKin %>% ncol()
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
library(magrittr)
tasKinR <- tasKin %>% as.matrix()
## Inspect first 5 rows and columns ----
tasKinR[1:5, 1:5]
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
library(magrittr)
## Create a dummy pairwise matrix object ----
set.seed(123)
m <- 10
s <- matrix(rnorm(100), m)
s[lower.tri(s)] <- t(s)[lower.tri(s)]
diag(s) <- 2
## Add sample IDs ----
colnames(s) <- rownames(s) <- paste0("s_", seq_len(m))
testTasselDist <- s %>% asTasselDistanceMatrix()
testTasselDist
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
tasGenoHMP
pcaRes <- pca(tasGenoHMP)
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
tasDist
mdsRes <- mds(tasDist)
## ---- eval=TRUE, echo=TRUE----------------------------------------------------
pcaRes
## ---- echo=TRUE, eval=TRUE----------------------------------------------------
# Read in phenotype data
phenoPathCov <- system.file("extdata", "mdp_phenotype.txt", package = "rTASSEL")
tasPhenoCov <- rTASSEL::readPhenotypeFromPath(phenoPathCov)
# Calculate BLUEs
tasBLUE <- rTASSEL::assocModelFitter(
tasObj = tasPhenoCov,
formula = . ~ ., # <- All data is used!
fitMarkers = FALSE,
kinship = NULL,
fastAssociation = FALSE
)
# Return BLUE output
str(tasBLUE)
## ---- echo=TRUE, eval=TRUE----------------------------------------------------
# Calculate GLM
tasGLM <- rTASSEL::assocModelFitter(
tasObj = tasGenoPheno, # <- our prior TASSEL object
formula = list(EarHT, dpoll) ~ ., # <- only EarHT and dpoll are ran
fitMarkers = TRUE, # <- set this to TRUE for GLM
kinship = NULL,
fastAssociation = FALSE
)
# Return GLM output
str(tasGLM)
## ---- echo=TRUE, eval=TRUE----------------------------------------------------
# Calculate MLM
tasMLM <- rTASSEL::assocModelFitter(
tasObj = tasGenoPheno, # <- our prior TASSEL object
formula = EarHT ~ ., # <- run only EarHT
fitMarkers = TRUE, # <- set this to TRUE for GLM
kinship = tasKin, # <- our prior kinship object
fastAssociation = FALSE
)
# Return GLM output
str(tasMLM)
## ---- echo=TRUE, eval=TRUE----------------------------------------------------
# Read data - need only non missing data!
phenoPathFast <-system.file(
"extdata",
"mdp_traits_nomissing.txt",
package = "rTASSEL"
)
# Creat rTASSEL object - use prior TASSEL genotype object
tasGenoPhenoFast <- rTASSEL::readGenotypePhenotype(
genoPathOrObj = tasGenoHMP,
phenoPathDFOrObj = phenoPathFast
)
# Calculate MLM
tasFAST <- rTASSEL::assocModelFitter(
tasObj = tasGenoPhenoFast, # <- our prior TASSEL object
formula = . ~ ., # <- run all of the phenotype data
fitMarkers = TRUE, # <- set this to TRUE for GLM
kinship = NULL,
fastAssociation = TRUE # <- set this to TRUE for fast assoc.
)
# Return GLM output
str(tasFAST)
## ---- echo=TRUE, eval=TRUE----------------------------------------------------
phyloTree <- createTree(
tasObj = tasGenoHMP,
clustMethod = "Neighbor_Joining"
)
## ---- echo=TRUE, eval=TRUE----------------------------------------------------
phyloTree
## ---- echo=TRUE, eval=FALSE---------------------------------------------------
# # Generate Manhattan plot for ear height trait
# manhattanEH <- manhattanPlot(
# assocStats = tasMLM$MLM_Stats,
# trait = "EarHT",
# threshold = 5
# )
#
# manhattanEH
## ---- echo=TRUE, eval=FALSE---------------------------------------------------
# # Filter genotype table by position
# tasGenoPhenoFilt <- filterGenotypeTableSites(
# tasObj = tasGenoPheno,
# siteRangeFilterType = "position",
# startPos = 228e6,
# endPos = 300e6,
# startChr = 2,
# endChr = 2
# )
#
# # Generate and visualize LD
# myLD <- ldPlot(
# tasObj = tasGenoPhenoFilt,
# ldType = "All",
# plotVal = "r2",
# verbose = FALSE
# )
#
# myLD
## ---- echo=TRUE, eval=FALSE---------------------------------------------------
# library(magrittr)
#
# tasGenoHMP %>% ldJavaApp(windowSize = 100)
## ---- echo=TRUE, eval=FALSE---------------------------------------------------
# library(magrittr)
#
# tasGenoHMP %>%
# filterGenotypeTableTaxa(
# taxa = c("33-16", "38-11", "4226", "4722", "A188", "A214N")
# ) %>%
# treeJavaApp()
## ---- echo=TRUE, eval=FALSE---------------------------------------------------
# tasCV <- genomicPrediction(
# tasPhenoObj = tasGenoPheno,
# kinship = tasKin,
# doCV = TRUE,
# kFolds = 5,
# nIter = 1
# )
# head(tasCV)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.