#' @include class_RegspliceData.R class_RegspliceResults.R
NULL
#' Calculate normalization factors.
#'
#' Calculate normalization factors to scale library sizes, using the TMM (trimmed mean of
#' M-values) method implemented in \code{edgeR}.
#'
#' Normalization factors are used to scale the raw library sizes (total read counts per
#' sample). We use the TMM (trimmed mean of M-values) normalization method (Robinson and
#' Oshlack, 2010), as implemented in the \code{edgeR} package.
#'
#' For more details, see the documentation for \code{\link[edgeR]{calcNormFactors}} in
#' the \code{edgeR} package.
#'
#' This step should be performed after filtering with \code{\link{filterZeros}} and
#' \code{\link{filterLowCounts}}. The normalization factors are then used by
#' \code{limma-voom} in the next step (\code{\link{runVoom}}).
#'
#' The normalization factors are stored in a new column named \code{norm_factors} in the
#' column meta-data (\code{colData} slot) of the \code{\linkS4class{RegspliceData}}
#' object. The \code{colData} can be accessed with the accessor function
#' \code{colData()}.
#'
#' Normalization should be skipped when using exon microarray data. (When using the
#' \code{\link{regsplice}} wrapper function, normalization can be disabled with the
#' argument \code{normalize = FALSE}).
#'
#' Previous step: Filter low-count exon bins with \code{\link{filterLowCounts}}.
#' Next step: Calculate \code{limma-voom} transformation and weights with
#' \code{\link{runVoom}}.
#'
#'
#' @param rs_data \code{\linkS4class{RegspliceData}} object, which has already been
#' filtered with \code{\link{filterZeros}} and \code{\link{filterLowCounts}}.
#' @param norm_method Normalization method to use. Options are \code{"TMM"},
#' \code{"RLE"}, \code{"upperquartile"}, and \code{"none"}. See documentation for
#' \code{\link[edgeR]{calcNormFactors}} in \code{edgeR} package for details. Default is
#' \code{"TMM"}.
#'
#'
#' @return Returns a \code{\linkS4class{RegspliceData}} object. Normalization factors are
#' stored in the column \code{norm_factors} in the column meta-data (\code{colData}
#' slot), which can be accessed with the \code{colData()} accessor function.
#'
#' @seealso \code{\link{filterLowCounts}} \code{\link{runVoom}}
#'
#' @importFrom edgeR calcNormFactors
#' @importFrom S4Vectors DataFrame SimpleList
#'
#' @export
#'
#' @examples
#' file_counts <- system.file("extdata/vignette_counts.txt", package = "regsplice")
#' data <- read.table(file_counts, header = TRUE, sep = "\t", stringsAsFactors = FALSE)
#' head(data)
#'
#' counts <- data[, 2:7]
#' tbl_exons <- table(sapply(strsplit(data$exon, ":"), function(s) s[[1]]))
#' gene_IDs <- names(tbl_exons)
#' n_exons <- unname(tbl_exons)
#' condition <- rep(c("untreated", "treated"), each = 3)
#'
#' rs_data <- RegspliceData(counts, gene_IDs, n_exons, condition)
#'
#' rs_data <- filterZeros(rs_data)
#' rs_data <- filterLowCounts(rs_data)
#' rs_data <- runNormalization(rs_data)
#'
runNormalization <- function(rs_data, norm_method = "TMM") {
norm_method <- match.arg(norm_method, c("TMM", "RLE", "upperquartile", "none"))
counts <- countsData(rs_data)
norm_factors <- edgeR::calcNormFactors(counts, method = norm_method)
colData(rs_data)$norm_factors <- norm_factors
rs_data
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.