A wrapped LASSO approach by integrating an ensemble learning strategy to help select efficient, stable, and high confidential variables from omics-based data. Using a bagging strategy in combination of a parametric method or inflection point search method for cut-off threshold determination. This package can integrate and vote variables generated from multiple LASSO models to determine the optimal candidates. Luo H, Zhao Q, et al (2020) <doi:10.1126/scitranslmed.aax7533> for more details.
Package details |
|
---|---|
Bioconductor views | FeatureExtraction Software StatisticalMethod |
Maintainer | |
License | GPL-3 |
Version | 0.99.0 |
Package repository | View on GitHub |
Installation |
Install the latest version of this package by entering the following in R:
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.