Keita Iida 2022-07-14
MacBook Pro (Big Sur, 16-inch, 2019), Processor (2.4 GHz 8-Core Intel Core i9), Memory (64 GB 2667 MHz DDR4).
Attach necessary libraries:
library(ASURAT)
library(SingleCellExperiment)
library(SummarizedExperiment)
In this vignette, we analyze single-cell RNA sequencing (scRNA-seq) data obtained from peripheral blood mononuclear cells (PBMCs) of healthy donors.
The data can be loaded by the following code:
pbmc <- readRDS(url("https://figshare.com/ndownloader/files/34112462"))
The data are stored in DOI:10.6084/m9.figshare.19200254 and the generating process is described below.
The data were obtained from 10x Genomics repository (PBMC 6k). Create SingleCellExperiment objects by inputting raw read count tables.
path_dir <- "rawdata/2020_001_10xgenomics/pbmc_6k/"
path_dir <- paste0(path_dir, "filtered_matrices_mex/hg19/")
mat <- Seurat::Read10X(data.dir = path_dir, gene.column = 2,
unique.features = TRUE, strip.suffix = FALSE)
pbmc <- SingleCellExperiment(assays = list(counts = as.matrix(mat)),
rowData = data.frame(gene = rownames(mat)),
colData = data.frame(sample = colnames(mat)))
dim(pbmc)
[2,] 32738 5419
# Save data.
saveRDS(pbmc, file = "backup/05_001_pbmc6k_rawdata.rds")
# Load data.
pbmc <- readRDS("backup/05_001_pbmc6k_rawdata.rds")
Remove variables (genes) and samples (cells) with low quality, by processing the following three steps:
First of all, add metadata for both variables and samples using ASURAT
function add_metadata()
.
pbmc <- add_metadata(sce = pbmc, mitochondria_symbol = "^MT-")
ASURAT function remove_variables()
removes variable (gene) data such
that the numbers of non-zero expressing samples (cells) are less than
min_nsamples
.
pbmc <- remove_variables(sce = pbmc, min_nsamples = 10)
Qualities of sample (cell) data are confirmed based on proper
visualization of colData(sce)
.
title <- "PBMC 6k"
df <- data.frame(x = colData(pbmc)$nReads, y = colData(pbmc)$nGenes)
p <- ggplot2::ggplot() +
ggplot2::geom_point(ggplot2::aes(x = df$x, y = df$y), size = 1, alpha = 1) +
ggplot2::labs(title = title, x = "Number of reads", y = "Number of genes") +
ggplot2::theme_classic(base_size = 20) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5, size = 20))
filename <- "figures/figure_05_0010.png"
ggplot2::ggsave(file = filename, plot = p, dpi = 50, width = 5, height = 5)
df <- data.frame(x = colData(pbmc)$nReads, y = colData(pbmc)$percMT)
p <- ggplot2::ggplot() +
ggplot2::geom_point(ggplot2::aes(x = df$x, y = df$y), size = 1, alpha = 1) +
ggplot2::labs(title = title, x = "Number of reads", y = "Perc of MT reads") +
ggplot2::theme_classic(base_size = 20) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5, size = 20))
filename <- "figures/figure_05_0011.png"
ggplot2::ggsave(file = filename, plot = p, dpi = 50, width = 5, height = 5)
ASURAT function remove_samples()
removes sample (cell) data by setting
cutoff values for the metadata.
pbmc <- remove_samples(sce = pbmc, min_nReads = 500, max_nReads = 10000,
min_nGenes = 100, max_nGenes = 1e+10,
min_percMT = 0, max_percMT = 10)
Qualities of variable (gene) data are confirmed based on proper
visualization of rowData(sce)
.
title <- "PBMC 6k"
aveexp <- apply(as.matrix(assay(pbmc, "counts")), 1, mean)
df <- data.frame(x = seq_len(nrow(rowData(pbmc))),
y = sort(aveexp, decreasing = TRUE))
p <- ggplot2::ggplot() + ggplot2::scale_y_log10() +
ggplot2::geom_point(ggplot2::aes(x = df$x, y = df$y), size = 1, alpha = 1) +
ggplot2::labs(title = title, x = "Rank of genes", y = "Mean read counts") +
ggplot2::theme_classic(base_size = 20) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5, size = 20))
filename <- "figures/figure_05_0015.png"
ggplot2::ggsave(file = filename, plot = p, dpi = 50, width = 5, height = 5)
ASURAT function remove_variables_second()
removes variable (gene) data
such that the mean read counts across samples are less than
min_meannReads
.
pbmc <- remove_variables_second(sce = pbmc, min_meannReads = 0.05)
dim(pbmc)
[1] 3554 5406
# Save data.
saveRDS(pbmc, file = "backup/05_002_pbmc6k_dataqc.rds")
# Load data.
pbmc <- readRDS("backup/05_002_pbmc6k_dataqc.rds")
Perform bayNorm()
(Tang et al., Bioinformatics, 2020) for attenuating
technical biases with respect to zero inflation and variation of capture
efficiencies between samples (cells).
bayout <- bayNorm::bayNorm(Data = assay(pbmc, "counts"), mode_version = TRUE)
assay(pbmc, "normalized") <- bayout$Bay_out
Perform log-normalization with a pseudo count.
assay(pbmc, "logcounts") <- log(assay(pbmc, "normalized") + 1)
Center row data.
mat <- assay(pbmc, "logcounts")
assay(pbmc, "centered") <- sweep(mat, 1, apply(mat, 1, mean), FUN = "-")
Set gene expression data into altExp(sce)
.
sname <- "logcounts"
altExp(pbmc, sname) <- SummarizedExperiment(list(counts = assay(pbmc, sname)))
Add ENTREZ Gene IDs to rowData(sce)
.
dictionary <- AnnotationDbi::select(org.Hs.eg.db::org.Hs.eg.db,
key = rownames(pbmc),
columns = "ENTREZID", keytype = "SYMBOL")
dictionary <- dictionary[!duplicated(dictionary$SYMBOL), ]
rowData(pbmc)$geneID <- dictionary$ENTREZID
# Save data.
saveRDS(pbmc, file = "backup/05_003_pbmc6k_normalized.rds")
# Load data.
pbmc <- readRDS("backup/05_003_pbmc6k_normalized.rds")
Infer cell or disease types, biological functions, and signaling pathway activity at the single-cell level by inputting related databases.
ASURAT transforms centered read count tables to functional feature matrices, termed sign-by-sample matrices (SSMs). Using SSMs, perform unsupervised clustering of samples (cells).
Prepare correlation matrices of gene expressions.
mat <- t(as.matrix(assay(pbmc, "centered")))
cormat <- cor(mat, method = "spearman")
# Save data.
saveRDS(cormat, file = "backup/05_003_pbmc6k_cormat.rds")
# Load data.
cormat <- readRDS("backup/05_003_pbmc6k_cormat.rds")
Load databases.
urlpath <- "https://github.com/keita-iida/ASURATDB/blob/main/genes2bioterm/"
load(url(paste0(urlpath, "20201213_human_CO.rda?raw=TRUE"))) # CO
load(url(paste0(urlpath, "20220308_human_MSigDB.rda?raw=TRUE"))) # MSigDB
load(url(paste0(urlpath, "20220308_human_CellMarker.rda?raw=TRUE"))) # CellMarker
load(url(paste0(urlpath, "20201213_human_GO_red.rda?raw=TRUE"))) # GO
load(url(paste0(urlpath, "20201213_human_KEGG.rda?raw=TRUE"))) # KEGG
The reformatted knowledge-based data were available from the following repositories:
Create a custom-built cell type-related databases by combining different databases for analyzing human single-cell transcriptome data.
d <- list(human_CO[["cell"]], human_MSigDB[["cell"]], human_CellMarker[["cell"]])
human_CB <- list(cell = do.call("rbind", d))
Add formatted databases to metadata(sce)$sign
.
pbmcs <- list(CB = pbmc, GO = pbmc, KG = pbmc)
metadata(pbmcs$CB) <- list(sign = human_CB[["cell"]])
metadata(pbmcs$GO) <- list(sign = human_GO[["BP"]])
metadata(pbmcs$KG) <- list(sign = human_KEGG[["pathway"]])
ASURAT function remove_signs()
redefines functional gene sets for the
input database by removing genes, which are not included in
rownames(sce)
, and further removes biological terms including too few
or too many genes.
pbmcs$CB <- remove_signs(sce = pbmcs$CB, min_ngenes = 2, max_ngenes = 1000)
pbmcs$GO <- remove_signs(sce = pbmcs$GO, min_ngenes = 2, max_ngenes = 1000)
pbmcs$KG <- remove_signs(sce = pbmcs$KG, min_ngenes = 2, max_ngenes = 1000)
ASURAT function cluster_genes()
clusters functional gene sets using a
correlation graph-based decomposition method, which produces strongly,
variably, and weakly correlated gene sets (SCG, VCG, and WCG,
respectively).
set.seed(1)
pbmcs$CB <- cluster_genesets(sce = pbmcs$CB, cormat = cormat,
th_posi = 0.22, th_nega = -0.20)
set.seed(1)
pbmcs$GO <- cluster_genesets(sce = pbmcs$GO, cormat = cormat,
th_posi = 0.20, th_nega = -0.30)
set.seed(1)
pbmcs$KG <- cluster_genesets(sce = pbmcs$KG, cormat = cormat,
th_posi = 0.20, th_nega = -0.20)
ASURAT function create_signs()
creates signs by the following
criteria:
min_cnt_strg
(the default value
is 2) andmin_cnt_vari
(the default value is
2),which are independently applied to SCGs and VCGs, respectively.
pbmcs$CB <- create_signs(sce = pbmcs$CB, min_cnt_strg = 5, min_cnt_vari = 5)
pbmcs$GO <- create_signs(sce = pbmcs$GO, min_cnt_strg = 3, min_cnt_vari = 3)
pbmcs$KG <- create_signs(sce = pbmcs$KG, min_cnt_strg = 3, min_cnt_vari = 3)
If signs have semantic similarity information, one can use ASURAT
function remove_signs_redundant()
for removing redundant sings using
the semantic similarity matrices.
simmat <- human_GO$similarity_matrix$BP
pbmcs$GO <- remove_signs_redundant(sce = pbmcs$GO, similarity_matrix = simmat,
threshold = 0.85, keep_rareID = TRUE)
ASURAT function remove_signs_manually()
removes signs by specifying
IDs (e.g., GOID:XXX
) or descriptions (e.g., metabolic
) using
grepl()
.
keywords <- "Covid|COVID"
pbmcs$KG <- remove_signs_manually(sce = pbmcs$KG, keywords = keywords)
ASURAT function create_sce_signmatrix()
creates a new
SingleCellExperiment object new_sce
, consisting of the following
information:
assayNames(new_sce)
: counts (SSM whose entries are termed sign
scores),names(colData(new_sce))
: nReads, nGenes, percMT,names(rowData(new_sce))
: ParentSignID, Description, CorrGene,
etc.,names(metadata(new_sce))
: sign_SCG, sign_VCG, etc.,altExpNames(new_sce)
: something if there is data in altExp(sce)
.pbmcs$CB <- makeSignMatrix(sce = pbmcs$CB, weight_strg = 0.5, weight_vari = 0.5)
pbmcs$GO <- makeSignMatrix(sce = pbmcs$GO, weight_strg = 0.5, weight_vari = 0.5)
pbmcs$KG <- makeSignMatrix(sce = pbmcs$KG, weight_strg = 0.5, weight_vari = 0.5)
Perform t-distributed stochastic neighbor embedding.
for(i in seq_along(pbmcs)){
set.seed(1)
mat <- t(as.matrix(assay(pbmcs[[i]], "counts")))
res <- Rtsne::Rtsne(mat, dim = 2, pca = TRUE, initial_dims = 50)
reducedDim(pbmcs[[i]], "TSNE") <- res[["Y"]]
}
Perform Uniform Manifold Approximation and Projection.
for(i in seq_along(pbmcs)){
set.seed(1)
mat <- t(as.matrix(assay(pbmcs[[i]], "counts")))
res <- umap::umap(mat, n_components = 2)
reducedDim(pbmcs[[i]], "UMAP") <- res[["layout"]]
}
Show the results of dimensional reduction in low-dimensional spaces.
titles <- c("PBMC 6k (cell type)", "PBMC 6k (function)", "PBMC 6k (pathway)")
for(i in seq_along(titles)){
df <- as.data.frame(reducedDim(pbmcs[[i]], "UMAP"))
p <- ggplot2::ggplot() +
ggplot2::geom_point(ggplot2::aes(x = df[, 1], y = df[, 2]),
color = "black", size = 1, alpha = 1) +
ggplot2::labs(title = titles[i], x = "UMAP_1", y = "UMAP_2") +
ggplot2::theme_classic(base_size = 20) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5, size = 18))
filename <- sprintf("figures/figure_05_%04d.png", 19 + i)
ggplot2::ggsave(file = filename, plot = p, dpi = 50, width = 4.1, height = 4.3)
}
# Save data.
saveRDS(pbmcs, file = "backup/05_004_pbmcs6k_ssm.rds")
# Load data.
pbmcs <- readRDS("backup/05_004_pbmcs6k_ssm.rds")
To date (December, 2021), one of the most useful clustering methods in scRNA-seq data analysis is a combination of a community detection algorithm and graph-based unsupervised clustering, developed in Seurat package.
Here, our strategy is as follows:
rowData()
and colData()
must have data),ScaleData()
, RunPCA()
, FindNeighbors()
, and
FindClusters()
,temp
,colData(temp)$seurat_clusters
into
colData(sce)$seurat_clusters
.resolutions <- c(0.15, 0.15, 0.15)
dims <- list(seq_len(40), seq_len(40), seq_len(40))
for(i in seq_along(pbmcs)){
surt <- Seurat::as.Seurat(pbmcs[[i]], counts = "counts", data = "counts")
mat <- as.matrix(assay(pbmcs[[i]], "counts"))
surt[["SSM"]] <- Seurat::CreateAssayObject(counts = mat)
Seurat::DefaultAssay(surt) <- "SSM"
surt <- Seurat::ScaleData(surt, features = rownames(surt))
surt <- Seurat::RunPCA(surt, features = rownames(surt))
surt <- Seurat::FindNeighbors(surt, reduction = "pca", dims = dims[[i]])
surt <- Seurat::FindClusters(surt, resolution = resolutions[i])
temp <- Seurat::as.SingleCellExperiment(surt)
colData(pbmcs[[i]])$seurat_clusters <- colData(temp)$seurat_clusters
}
Show the clustering results in low-dimensional spaces.
titles <- c("PBMC 6k (cell type)", "PBMC 6k (function)", "PBMC 6k (pathway)")
for(i in seq_along(titles)){
labels <- colData(pbmcs[[i]])$seurat_clusters
df <- as.data.frame(reducedDim(pbmcs[[i]], "UMAP"))
p <- ggplot2::ggplot() +
ggplot2::geom_point(ggplot2::aes(x = df[, 1], y = df[, 2], color = labels),
size = 1, alpha = 1) +
ggplot2::labs(title = titles[i], x = "UMAP_1", y = "UMAP_2", color = "") +
ggplot2::theme_classic(base_size = 20) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5, size = 18)) +
ggplot2::guides(colour = ggplot2::guide_legend(override.aes = list(size = 4)))
if(i == 1){
p <- p + ggplot2::scale_colour_hue()
}else if(i == 2){
p <- p + ggplot2::scale_colour_brewer(palette = "Set1")
}else if(i == 3){
p <- p + ggplot2::scale_colour_brewer(palette = "Set2")
}
filename <- sprintf("figures/figure_05_%04d.png", 29 + i)
ggplot2::ggsave(file = filename, plot = p, dpi = 50, width = 5.1, height = 4.3)
}
Significant signs are analogous to differentially expressed genes but bear biological meanings. Note that naïve usages of statistical tests should be avoided because the row vectors of SSMs are centered.
Instead, ASURAT function compute_sepI_all()
computes separation
indices for each cluster against the others. Briefly, a separation index
“sepI”, ranging from -1 to 1, is a nonparametric measure of significance
of a given sign score for a given subpopulation. The larger (resp.
smaller) sepI is, the more reliable the sign is as a positive (resp.
negative) marker for the cluster.
for(i in seq_along(pbmcs)){
set.seed(1)
labels <- colData(pbmcs[[i]])$seurat_clusters
pbmcs[[i]] <- compute_sepI_all(sce = pbmcs[[i]], labels = labels,
nrand_samples = NULL)
}
set.seed(1)
pbmcs_LabelCB_SignGO <- pbmcs$GO
metadata(pbmcs_LabelCB_SignGO)$marker_signs <- NULL
lbs <- colData(pbmcs$CB)$seurat_clusters
pbmcs_LabelCB_SignGO <- compute_sepI_all(sce = pbmcs_LabelCB_SignGO,
labels = lbs, nrand_samples = NULL)
set.seed(1)
pbmcs_LabelCB_SignKG <- pbmcs$KG
metadata(pbmcs_LabelCB_SignKG)$marker_signs <- NULL
lbs <- colData(pbmcs$CB)$seurat_clusters
pbmcs_LabelCB_SignKG <- compute_sepI_all(sce = pbmcs_LabelCB_SignKG,
labels = lbs, nrand_samples = NULL)
To date (December, 2021), one of the most useful methods of multiple
statistical tests in scRNA-seq data analysis is to use a Seurat function
FindAllMarkers()
.
If there is gene expression data in altExp(sce)
, one can investigate
differentially expressed genes by using Seurat functions in the similar
manner as described before.
set.seed(1)
surt <- Seurat::as.Seurat(pbmcs$CB, counts = "counts", data = "counts")
mat <- as.matrix(assay(altExp(pbmcs$CB), "counts"))
surt[["GEM"]] <- Seurat::CreateAssayObject(counts = mat)
Seurat::DefaultAssay(surt) <- "GEM"
surt <- Seurat::SetIdent(surt, value = "seurat_clusters")
res <- Seurat::FindAllMarkers(surt, only.pos = TRUE,
min.pct = 0.25, logfc.threshold = 0.25)
metadata(pbmcs$CB)$marker_genes$all <- res
# Save data.
saveRDS(pbmcs, file = "backup/05_005_pbmcs6k_desdeg.rds")
saveRDS(pbmcs_LabelCB_SignGO, file = "backup/05_005_pbmcs6k_LabelCB_SignGO.rds")
saveRDS(pbmcs_LabelCB_SignKG, file = "backup/05_005_pbmcs6k_LabelCB_SignKG.rds")
# Load data.
pbmcs <- readRDS("backup/05_005_pbmcs6k_desdeg.rds")
pbmcs_LabelCB_SignGO <- readRDS("backup/05_005_pbmcs6k_LabelCB_SignGO.rds")
pbmcs_LabelCB_SignKG <- readRDS("backup/05_005_pbmcs6k_LabelCB_SignKG.rds")
Simultaneously analyze multiple sign-by-sample matrices, which helps us characterize individual samples (cells) from multiple biological aspects.
ASURAT function plot_multiheatmaps()
shows heatmaps (ComplexHeatmap
object) of sign scores and gene expression levels (if there are), where
rows and columns stand for sign (or gene) and sample (cell),
respectively.
First, remove unrelated signs by setting keywords, followed by selecting top significant signs and genes for the clustering results with respect to separation index and p-value, respectively.
# Significant signs
marker_signs <- list()
keys <- "foofoo|hogehoge"
for(i in seq_along(pbmcs)){
if(i == 1){
marker_signs[[i]] <- metadata(pbmcs[[i]])$marker_signs$all
}else if(i == 2){
marker_signs[[i]] <- metadata(pbmcs_LabelCB_SignGO)$marker_signs$all
}else if(i == 3){
marker_signs[[i]] <- metadata(pbmcs_LabelCB_SignKG)$marker_signs$all
}
marker_signs[[i]] <- marker_signs[[i]][!grepl(keys, marker_signs[[i]]$Description), ]
marker_signs[[i]] <- dplyr::group_by(marker_signs[[i]], Ident_1)
marker_signs[[i]] <- dplyr::slice_max(marker_signs[[i]], sepI, n = 1)
marker_signs[[i]] <- dplyr::slice_min(marker_signs[[i]], Rank, n = 1)
}
# Significant genes
marker_genes_CB <- metadata(pbmcs$CB)$marker_genes$all
marker_genes_CB <- dplyr::group_by(marker_genes_CB, cluster)
marker_genes_CB <- dplyr::slice_min(marker_genes_CB, p_val_adj, n = 1)
marker_genes_CB <- dplyr::slice_max(marker_genes_CB, avg_log2FC, n = 1)
Then, prepare arguments.
# ssm_list
sces_sub <- list() ; ssm_list <- list()
for(i in seq_along(pbmcs)){
sces_sub[[i]] <- pbmcs[[i]][rownames(pbmcs[[i]]) %in% marker_signs[[i]]$SignID, ]
ssm_list[[i]] <- assay(sces_sub[[i]], "counts")
}
names(ssm_list) <- c("SSM_celltype", "SSM_function", "SSM_pathway")
# gem_list
expr_sub <- altExp(pbmcs$CB, "logcounts")
expr_sub <- expr_sub[rownames(expr_sub) %in% marker_genes_CB$gene]
gem_list <- list(x = t(scale(t(as.matrix(assay(expr_sub, "counts"))))))
names(gem_list) <- "Scaled\nLogExpr"
# ssmlabel_list
labels <- list() ; ssmlabel_list <- list()
for(i in seq_along(pbmcs)){
tmp <- colData(sces_sub[[i]])$seurat_clusters
labels[[i]] <- data.frame(label = tmp)
n_groups <- length(unique(tmp))
if(i == 1){
labels[[i]]$color <- scales::hue_pal()(n_groups)[tmp]
}else if(i == 2){
labels[[i]]$color <- scales::brewer_pal(palette = "Set1")(n_groups)[tmp]
}else if(i == 3){
labels[[i]]$color <- scales::brewer_pal(palette = "Set2")(n_groups)[tmp]
}
ssmlabel_list[[i]] <- labels[[i]]
}
names(ssmlabel_list) <- c("Label_celltype", "Label_function", "Label_pathway")
Tips: If one would like to omit some color labels (e.g., labels
]), set the argument as follows:
ssmlabel_list[[2]] <- data.frame(label = NA, color = NA)
ssmlabel_list[[3]] <- data.frame(label = NA, color = NA)
Finally, plot heatmaps for the selected signs and genes.
filename <- "figures/figure_05_0040.png"
#png(file = filename, height = 1450, width = 1650, res = 300)
png(file = filename, height = 300, width = 300, res = 60)
set.seed(4)
title <- "PBMC 6k"
plot_multiheatmaps(ssm_list = ssm_list, gem_list = gem_list,
ssmlabel_list = ssmlabel_list, gemlabel_list = NULL,
nrand_samples = 500, show_row_names = TRUE, title = title)
dev.off()
Show violin plots for the sign score distributions across cell type-related clusters.
labels <- colData(pbmcs$CB)$seurat_clusters
vlist <- list(c("CB", "MSigDBID:162-S", "...T_CELL (CD3D, CD69, ...)"),
c("CB", "MSigDBID:266-S", "...MACROPHAGE... (LYZ, ...)"),
c("CB", "MSigDBID:1-S", "...NK_NKT_CELLS... (NKG7, GZMB, ...)"),
c("CB", "MSigDBID:159-S", "...B_CELLS (BLK, MS4A1, ...)"),
c("CB", "MSigDBID:257-V", "...MEGAKARYOCYTE... (PF4, PPBP, ...)"))
for(i in seq_along(vlist)){
ind <- which(rownames(pbmcs[[vlist[[i]][1]]]) == vlist[[i]][2])
subsce <- pbmcs[[vlist[[i]][1]]][ind, ]
df <- as.data.frame(t(as.matrix(assay(subsce, "counts"))))
p <- ggplot2::ggplot() +
ggplot2::geom_violin(ggplot2::aes(x = as.factor(labels), y = df[, 1],
fill = labels), trim = FALSE, size = 0.5) +
ggplot2::geom_boxplot(ggplot2::aes(x = as.factor(labels), y = df[, 1]),
width = 0.15, alpha = 0.6) +
ggplot2::labs(title = paste0(vlist[[i]][2], "\n", vlist[[i]][3]),
x = "Cluster (cell type)", y = "Sign score", fill = "Cluster") +
ggplot2::theme_classic(base_size = 25) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5, size = 20),
legend.position = "none") +
ggplot2::scale_fill_hue()
filename <- sprintf("figures/figure_05_%04d.png", 49 + i)
ggplot2::ggsave(file = filename, plot = p, dpi = 50, width = 6, height = 3.5)
}
colData(pbmcs$CB)$cell_type <- as.character(colData(pbmcs$CB)$seurat_clusters)
colData(pbmcs$CB)$cell_type[colData(pbmcs$CB)$cell_type == 0] <- "T"
colData(pbmcs$CB)$cell_type[colData(pbmcs$CB)$cell_type == 1] <- "Mono"
colData(pbmcs$CB)$cell_type[colData(pbmcs$CB)$cell_type == 2] <- "NK/NKT"
colData(pbmcs$CB)$cell_type[colData(pbmcs$CB)$cell_type == 3] <- "B"
colData(pbmcs$CB)$cell_type[colData(pbmcs$CB)$cell_type == 4] <- "Megakaryocyte"
Show the annotation results in low-dimensional spaces.
title <- "PBMC 6k (cell type)"
labels <- factor(colData(pbmcs$CB)$cell_type,
levels = c("T", "Mono", "NK/NKT", "B", "Megakaryocyte"))
df <- as.data.frame(reducedDim(pbmcs$CB, "UMAP"))
p <- ggplot2::ggplot() +
ggplot2::geom_point(ggplot2::aes(x = df[, 1], y = df[, 2], color = labels),
size = 1, alpha = 1) +
ggplot2::labs(title = title, x = "UMAP_1", y = "UMAP_2", color = "Cell state") +
ggplot2::theme_classic(base_size = 20) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5, size = 18)) +
ggplot2::scale_colour_hue() +
ggplot2::guides(colour = ggplot2::guide_legend(override.aes = list(size = 4)))
filename <- "figures/figure_05_0080.png"
ggplot2::ggsave(file = filename, plot = p, dpi = 50, width = 6.5, height = 4.3)
# Save data.
saveRDS(pbmcs, file = "backup/05_006_pbmcs6k_annotation.rds")
# Load data.
pbmcs <- readRDS("backup/05_006_pbmcs6k_annotation.rds")
Load the normalized data (see here).
pbmc <- readRDS("backup/05_003_pbmc6k_normalized.rds")
Prepare a SingleCellExperiment object.
mat <- as.matrix(assay(pbmc, "counts"))
pbmc <- SingleCellExperiment(assays = list(counts = as.matrix(mat)),
rowData = data.frame(gene = rownames(mat)),
colData = data.frame(sample = colnames(mat)))
According to the scran protocol, perform cell clustering for computing size factors for individual clusters, normalize data within individual clusters, and perform a variance modeling for each gene.
# Quick cell clustering
clusters <- scran::quickCluster(pbmc)
# scran normalization
pbmc <- scran::computeSumFactors(pbmc, clusters = clusters)
pbmc <- scater::logNormCounts(pbmc)
# Perform a variance modeling
metadata(pbmc)$dec <- scran::modelGeneVar(pbmc)
Show the results of variance modeling.
df <- data.frame(x = metadata(pbmc)$dec$mean, y = metadata(pbmc)$dec$total,
z = metadata(pbmc)$dec$tech)
title <- "PBMC 6k"
p <- ggplot2::ggplot() +
ggplot2::geom_point(ggplot2::aes(x = df[,1], y = df[,2]), color = "black",
alpha = 1, size = 2) +
ggplot2::geom_line(ggplot2::aes(x = df[,1], y = df[,3]), color = "red",
alpha = 1, size = 2) +
ggplot2::labs(title = title, x = "Mean log-expression", y = "Variance") +
ggplot2::theme_classic(base_size = 20) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5, size = 20))
filename <- "figures/figure_05_0110.png"
ggplot2::ggsave(file = filename, plot = p, dpi = 50, width = 4.0, height = 4.0)
According to the scran protocol, choose top variable genes using
getTopHVGs()
, performe denoisPCA()
by inputting the variable genes,
and perform k-nearest neighbor graph-based clustering, where k is a
resolution parameter.
Tips: As mentioned in Cruz and Wishart, Cancer Inform. 2, 59-77 (2006), highly variable genes are selected as the cell-per-variable gene ratio being 5:1.
# Choose top variable genes.
hvg <- scran::getTopHVGs(metadata(pbmc)$dec, n = round(0.2 * ncol(pbmc)))
# Principal component analysis
pbmc <- scran::denoisePCA(pbmc, metadata(pbmc)$dec, subset.row = hvg)
# Cell clustering
set.seed(1)
g <- scran::buildSNNGraph(pbmc, use.dimred = "PCA", k = 200, type = "rank")
c <- igraph::cluster_louvain(g)$membership
colData(pbmc)$scran_clusters <- as.factor(c)
Perform t-distributed stochastic neighbor embedding and Uniform Manifold Approximation and Projection.
mat <- reducedDim(pbmc, "PCA")
# t-SNE
set.seed(1)
res <- Rtsne::Rtsne(mat, dim = 2, pca = FALSE)
reducedDim(pbmc, "TSNE") <- res[["Y"]]
# UMAP
set.seed(1)
res <- umap::umap(mat, n_components = 2)
reducedDim(pbmc, "UMAP") <- res[["layout"]]
Show the clustering results.
title <- "PBMC 6k (scran)"
labels <- colData(pbmc)$scran_clusters
df <- as.data.frame(reducedDim(pbmc, "UMAP"))
p <- ggplot2::ggplot() +
ggplot2::geom_point(ggplot2::aes(x = df[, 1], y = df[, 2], color = labels),
size = 1, alpha = 1) +
ggplot2::labs(title = title, x = "UMAP_1", y = "UMAP_2", color = "") +
ggplot2::theme_classic(base_size = 20) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5, size = 20)) +
ggplot2::scale_colour_hue() +
ggplot2::guides(colour = ggplot2::guide_legend(override.aes = list(size = 4)))
filename <- "figures/figure_05_0130.png"
ggplot2::ggsave(file = filename, plot = p, dpi = 50, width = 5.1, height = 4.3)
Performs pairwiseTTests()
and combineMarkers()
for finding cluster
markers.
metadata(pbmc)$pwtt <- scran::pairwiseTTests(
x = as.matrix(assay(pbmc, "logcounts")),
groups = colData(pbmc)$scran_clusters, direction = "up")
metadata(pbmc)$cmb <- scran::combineMarkers(
de.lists = metadata(pbmc)$pwtt$statistics,
pairs = metadata(pbmc)$pwtt$pairs, pval.type = "all")
# Create a result table.
res <- list()
for(i in seq_along(metadata(pbmc)$cmb@listData)){
g <- metadata(pbmc)$cmb@listData[[i]]@rownames
p <- metadata(pbmc)$cmb@listData[[i]]@listData[["p.value"]]
fd <- metadata(pbmc)$cmb@listData[[i]]@listData[["FDR"]]
fc <- metadata(pbmc)$cmb@listData[[i]]@listData[["summary.logFC"]]
res[[i]] <- data.frame(label = i, gene = g, pval = p, FDR = fd, logFC = fc)
}
tmp <- c()
for(i in seq_along(res)){
tmp <- rbind(tmp, res[[i]])
}
metadata(pbmc)$stat <- tmp
View(metadata(pbmc)$stat[metadata(pbmc)$stat$FDR < 10^(-100), ])
Defining significant genes as genes with FDR\<1e-100, infer cell types using GeneCards.
1: Unspecified # Only LDHB, RPS14, and RPS3 were detected as DEGs.
2: Monocyte # S100A9 (FDR ~0), S100A8 (FDR ~0)
3: NK/NKT # NKG7 (FDR ~e-239), GZMA (FDR ~e-204)
4: B cell # CD79A (FDR ~e-274), CD79B (FDR ~e-256)
colData(pbmc)$cell_type <- as.integer(as.character(colData(pbmc)$scran_clusters))
colData(pbmc)$cell_type[colData(pbmc)$cell_type == 1] <- "Unspecified"
colData(pbmc)$cell_type[colData(pbmc)$cell_type == 2] <- "Mono"
colData(pbmc)$cell_type[colData(pbmc)$cell_type == 3] <- "NK/NKT"
colData(pbmc)$cell_type[colData(pbmc)$cell_type == 4] <- "B"
Show the annotation results in low-dimensional spaces.
title <- "PBMC 6k (scran)"
labels <- factor(colData(pbmc)$cell_type,
levels = c("Mono", "NK/NKT", "B", "Unspecified"))
df <- as.data.frame(reducedDim(pbmc, "UMAP"))
mycolor <- scales::hue_pal()(5)
mycolor <- c("Mono" = mycolor[2], "NK/NKT" = mycolor[3], "B" = mycolor[4],
"Unspecified" = "grey80")
p <- ggplot2::ggplot() +
ggplot2::geom_point(ggplot2::aes(x = df[, 1], y = df[, 2], color = labels),
size = 1, alpha = 1) +
ggplot2::labs(title = title, x = "UMAP_1", y = "UMAP_2", color = "Cell type") +
ggplot2::theme_classic(base_size = 20) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5, size = 18)) +
ggplot2::guides(colour = ggplot2::guide_legend(override.aes = list(size = 4))) +
ggplot2::scale_color_manual(values = mycolor)
filename <- "figures/figure_05_0140.png"
ggplot2::ggsave(file = filename, plot = p, dpi = 50, width = 6.1, height = 4.3)
# Save data.
saveRDS(pbmc, file = "backup/05_011_pbmc6k_scran.rds")
# Load data.
pbmc <- readRDS("backup/05_011_pbmc6k_scran.rds")
Load the normalized data (see here).
pbmc <- readRDS("backup/05_003_pbmc6k_normalized.rds")
Create Seurat objects.
pbmc <- Seurat::CreateSeuratObject(counts = as.matrix(assay(pbmc, "counts")),
project = "PBMC")
According to the Seurat protocol, normalize data, perform variance stabilizing transform by setting the number of variable feature, scale data, and reduce dimension using principal component analysis.
# Normalization
pbmc <- Seurat::NormalizeData(pbmc, normalization.method = "LogNormalize")
# Variance stabilizing transform
n <- round(0.2 * ncol(pbmc))
pbmc <- Seurat::FindVariableFeatures(pbmc, selection.method = "vst", nfeatures = n)
# Scale data
pbmc <- Seurat::ScaleData(pbmc)
# Principal component analysis
pbmc <- Seurat::RunPCA(pbmc, features = Seurat::VariableFeatures(pbmc))
Compute the cumulative sum of variances, which is used for determining the number of the principal components (PCs).
pc <- which(cumsum(pbmc@reductions[["pca"]]@stdev) /
sum(pbmc@reductions[["pca"]]@stdev) > 0.9)[1]
Perform cell clustering.
# Create k-nearest neighbor graph.
pbmc <- Seurat::FindNeighbors(pbmc, reduction = "pca", dim = seq_len(pc))
# Cluster cells.
pbmc <- Seurat::FindClusters(pbmc, resolution = 0.1)
# Run t-SNE.
pbmc <- Seurat::RunTSNE(pbmc, dims.use = seq_len(2), reduction = "pca",
dims = seq_len(pc), do.fast = FALSE, perplexity = 30)
# Run UMAP.
pbmc <- Seurat::RunUMAP(pbmc, dims = seq_len(pc))
Show the clustering results.
title <- "PBMC 6k (Seurat)"
labels <- pbmc$seurat_clusters
df <- pbmc@reductions[["umap"]]@cell.embeddings
p <- ggplot2::ggplot() +
ggplot2::geom_point(ggplot2::aes(x = df[, 1], y = df[, 2], color = labels),
size = 1, alpha = 1) +
ggplot2::labs(title = title, x = "UMAP_1", y = "UMAP_2", color = "") +
ggplot2::theme_classic(base_size = 20) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5, size = 18)) +
ggplot2::scale_colour_hue() +
ggplot2::guides(colour = ggplot2::guide_legend(override.aes = list(size = 4)))
filename <- "figures/figure_05_0230.png"
ggplot2::ggsave(file = filename, plot = p, dpi = 50, width = 5.1, height = 4.3)
Find differentially expressed genes.
pbmc@misc$stat <- Seurat::FindAllMarkers(pbmc, only.pos = TRUE, min.pct = 0.25,
logfc.threshold = 0.25)
View(pbmc@misc$stat[which(pbmc@misc$stat$p_val_adj < 10^(-100)), ])
Defining significant genes as genes with FDR\<1e-100, infer cell types using GeneCards.
0: T cell # CD3D (p_val_adj ~0), CD3E (p_val_adj ~e-276)
1: Monocyte # S100A8 (p_val_adj ~0), S100A9 (p_val_adj ~0)
2: NK/NKT # NKG7 (p_val_adj ~0), GZMA (p_val_adj ~0)
3: B cell # CD79A (p_val_adj ~0), CD79B (p_val_adj ~0)
4: Megakaryocyte # PPBP (p_val_adj ~e-220), GZMB (p_val_adj ~e-285)
tmp <- as.integer(as.character(pbmc$seurat_clusters))
pbmc$cell_type <- tmp
pbmc$cell_type[pbmc$cell_type == 0] <- "T"
pbmc$cell_type[pbmc$cell_type == 1] <- "Mono"
pbmc$cell_type[pbmc$cell_type == 2] <- "NK/NKT"
pbmc$cell_type[pbmc$cell_type == 3] <- "B"
pbmc$cell_type[pbmc$cell_type == 4] <- "Megakaryocyte"
Show the annotation results in low-dimensional spaces.
title <- "PBMC 6k (Seurat)"
labels <- factor(pbmc$cell_type,
levels = c("T", "Mono", "NK/NKT", "B", "Megakaryocyte"))
df <- pbmc@reductions[["umap"]]@cell.embeddings
p <- ggplot2::ggplot() +
ggplot2::geom_point(ggplot2::aes(x = df[, 1], y = df[, 2], color = labels),
size = 1, alpha = 1) +
ggplot2::labs(title = title, x = "UMAP_1", y = "UMAP_2", color = "Cell type") +
ggplot2::theme_classic(base_size = 20) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5, size = 18)) +
ggplot2::scale_colour_hue() +
ggplot2::guides(colour = ggplot2::guide_legend(override.aes = list(size = 4)))
filename <- "figures/figure_05_0240.png"
ggplot2::ggsave(file = filename, plot = p, dpi = 50, width = 6.5, height = 4.3)
# Save data.
saveRDS(pbmc, file = "backup/05_021_pbmc6k_seurat.rds")
# Load data.
pbmc <- readRDS("backup/05_021_pbmc6k_seurat.rds")
Check the package version.
packageVersion("scCATCH")
[1] ‘3.0’
Load Seurat computational results.
pbmc <- readRDS("backup/05_021_pbmc6k_seurat.rds")
Create scCATCH objects.
mat <- as.matrix(Seurat::GetAssayData(object = pbmc, slot = "data"))
mat <- scCATCH::rev_gene(data = mat, data_type = "data", species = "Human",
geneinfo = scCATCH::geneinfo)
labels <- as.character(pbmc$seurat_clusters)
scc <- scCATCH::createscCATCH(data = mat, cluster = labels)
Perform findmarkergenes()
and findcelltype()
.
scc <- scCATCH::findmarkergene(object = scc, species = "Human",
marker = scCATCH::cellmatch,
tissue = "Peripheral blood", cancer = "Normal",
cell_min_pct = 0.25, logfc = 0.25, pvalue = 0.05)
scc <- scCATCH::findcelltype(object = scc)
pbmc@misc[["scCATCH"]] <- scc
View(pbmc@misc[["scCATCH"]]@celltype)
Annotate cells.
tmp <- pbmc[[]]
tmp[which(tmp$seurat_clusters == 0), ]$cell_type <- "Mono"
tmp[which(tmp$seurat_clusters == 1), ]$cell_type <- "Mono"
tmp[which(tmp$seurat_clusters == 2), ]$cell_type <- "T"
tmp[which(tmp$seurat_clusters == 3), ]$cell_type <- "B"
tmp[which(tmp$seurat_clusters == 4), ]$cell_type <- "T"
pbmc <- Seurat::AddMetaData(pbmc, tmp)
Show the annotation results in low-dimensional spaces.
title <- "PBMC 6k (Seurat + scCatch)"
labels <- factor(pbmc[[]]$cell_type, levels = c("T", "Mono", "B"))
mycolor <- scales::hue_pal()(5)
mycolor <- c("T" = mycolor[1], "Mono" = mycolor[2], "B" = mycolor[4])
df <- pbmc@reductions[["umap"]]@cell.embeddings
p <- ggplot2::ggplot() +
ggplot2::geom_point(ggplot2::aes(x = df[, 1], y = df[, 2], color = labels),
size = 1, alpha = 1) +
ggplot2::labs(title = title, x = "UMAP_1", y = "UMAP_2", color = "Cell type") +
ggplot2::theme_classic(base_size = 20) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5, size = 18)) +
ggplot2::scale_color_manual(values = mycolor) +
ggplot2::guides(colour = ggplot2::guide_legend(override.aes = list(size = 4)))
filename <- "figures/figure_05_0245.png"
ggplot2::ggsave(file = filename, plot = p, dpi = 50, width = 5.7, height = 4.3)
# Save data.
saveRDS(pbmc, file = "backup/05_022_pbmc6k_seurat_sccatch.rds")
# Load data.
pbmc <- readRDS("backup/05_022_pbmc6k_seurat_sccatch.rds")
Load the Seurat annotation results.
pbmc <- readRDS("backup/05_021_pbmc6k_seurat.rds")
Check the package version.
packageVersion("escape")
[1] ‘1.0.1’
Perform getGeneSets()
with an argument library = "C8"
(“cell type
signature gene sets” in
MSigDB).
pbmc@misc[["getGeneSets"]] <- escape::getGeneSets(species = "Homo sapiens",
library = "C8")
Perform enrichIt()
, estimating ssGSEA scores, in which the arguments
are the same with those in the vignettes in escape package.
ES <- escape::enrichIt(obj = pbmc, gene.sets = pbmc@misc[["getGeneSets"]],
groups = 1000, cores = 4)
pbmc <- Seurat::AddMetaData(pbmc, ES)
pbmc@misc[["enrichIt"]] <- ES
[1] "Using sets of 1000 cells. Running 5 times."
Setting parallel calculations through a SnowParam back-end
with workers=4 and tasks=100.
Estimating ssGSEA scores for 654 gene sets.
Setting parallel calculations through a SnowParam back-end
with workers=4 and tasks=100.
Estimating ssGSEA scores for 654 gene sets.
...
Setting parallel calculations through a SnowParam back-end
with workers=4 and tasks=100.
Estimating ssGSEA scores for 654 gene sets.
Perform t-distributed stochastic neighbor embedding and Uniform Manifold Approximation and Projection.
mat <- pbmc@misc[["enrichIt"]]
# t-SNE
set.seed(1)
res <- Rtsne::Rtsne(mat, dim = 2, pca = TRUE, initial_dims = 50)
pbmc@reductions[["tsne_ssgsea"]] <- res[["Y"]]
# UMAP
set.seed(1)
res <- umap::umap(mat, n_components = 2)
pbmc@reductions[["umap_ssgsea"]] <- res[["layout"]]
Perform unsupervised clustering of cells using Seurat functions.
surt <- Seurat::CreateSeuratObject(counts = t(pbmc@misc[["enrichIt"]]),
project = "PBMC")
surt <- Seurat::ScaleData(surt, features = rownames(surt))
surt <- Seurat::RunPCA(surt, features = rownames(surt))
surt <- Seurat::FindNeighbors(surt, reduction = "pca", dims = seq_len(40))
surt <- Seurat::FindClusters(surt, resolution = 0.1)
pbmc <- Seurat::AddMetaData(pbmc, metadata = surt[[]]$seurat_clusters,
col.name = "ssgsea_clusters")
Show the clustering results in low-dimensional spaces.
labels <- pbmc$ssgsea_clusters
df <- as.data.frame(pbmc@reductions[["umap_ssgsea"]])
p <- ggplot2::ggplot() +
ggplot2::geom_point(ggplot2::aes(x = df[, 1], y = df[, 2], color = labels),
size = 0.2, alpha = 1) +
ggplot2::labs(title = "PBMC 6k (ssGSEA)", x = "UMAP_1", y = "UMAP_2",
color = "") +
ggplot2::theme_classic(base_size = 20) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5, size = 18)) +
ggplot2::guides(colour = ggplot2::guide_legend(override.aes = list(size = 4),
ncol = 1))
filename <- "figures/figure_05_0280.png"
ggplot2::ggsave(file = filename, plot = p, dpi = 50, width = 5.1, height = 4.3)
# Save data.
saveRDS(pbmc, file = "backup/05_023_pbmc6k_ssGSEA_msigdb.rds")
# Load data.
pbmc <- readRDS("backup/05_023_pbmc6k_ssGSEA_msigdb.rds")
Load ssGSEA results.
pbmc <- readRDS("backup/05_023_pbmc6k_ssGSEA_msigdb.rds")
Investigate “significant” modules for Seurat clustering results.
set.seed(1)
surt <- Seurat::CreateSeuratObject(counts = t(pbmc@misc[["enrichIt"]]))
surt <- Seurat::AddMetaData(surt, metadata = pbmc$cell_type,
col.name = "seurat_cell_type")
surt <- Seurat::SetIdent(surt, value = "seurat_cell_type")
res <- Seurat::FindAllMarkers(surt, only.pos = TRUE,
min.pct = 0.15, logfc.threshold = 0.15)
rownames(res) <- seq_len(nrow(res))
pbmc@misc[["ssGSEA_stat"]] <- res
Show violin plots for ssGSEA score distributions for Seurat annotation results.
lvs <- c("T", "Mono", "NK/NKT", "B", "Megakaryocyte")
labels <- factor(pbmc$cell_type, levels = lvs)
descriptions <- c(gsub("-", "_", "DURANTE-ADULT-OLFACTORY-NEUROEPITHELIUM-CD4-T-CELLS"),
gsub("-", "_", "DURANTE-ADULT-OLFACTORY-NEUROEPITHELIUM-MACROPHAGES"),
gsub("-", "_", "TRAVAGLINI-LUNG-NATURAL-KILLER-T-CELL"),
gsub("-", "_", "DURANTE-ADULT-OLFACTORY-NEUROEPITHELIUM-B-CELLS"),
gsub("-", "_", "TRAVAGLINI-LUNG-PLATELET-MEGAKARYOCYTE-CELL"))
titles <- c(paste0("MSigDB: ssGSEA score for\n", gsub("_", "-", descriptions[1])),
paste0("MSigDB: ssGSEA score for\n", gsub("_", "-", descriptions[2])),
paste0("MSigDB: ssGSEA score for\n", gsub("_", "-", descriptions[3])),
paste0("MSigDB: ssGSEA score for\n", gsub("_", "-", descriptions[4])),
paste0("MSigDB: ssGSEA score for\n", gsub("_", "-", descriptions[5])))
mat <- pbmc@misc[["enrichIt"]]
mat <- mat[, which(colnames(mat) %in% descriptions)]
for(i in seq_along(descriptions)){
df <- data.frame(label = labels,
ssGSEA = mat[, which(colnames(mat) == descriptions[i])])
# df <- tidyr::pivot_longer(df, cols = c("Sign", "ssGSEA"))
p <- ggplot2::ggplot() +
ggplot2::geom_violin(ggplot2::aes(x = as.factor(df$label), y = df$ssGSEA),
fill = "grey80", trim = FALSE, size = 1) +
ggplot2::labs(title = titles[i], x = "Seurat annotations",
y = "ssGSEA scores") +
ggplot2::scale_x_discrete(guide = ggplot2::guide_axis(angle = 45)) +
ggplot2::theme_classic(base_size = 20) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5, size = 15))
filename <- sprintf("figures/figure_05_%04d.png", 289 + i)
ggplot2::ggsave(file = filename, plot = p, dpi = 50, width = 6, height = 5.3)
}
# Save data.
saveRDS(pbmc, file = "backup/05_024_pbmc6k_seurat_ssGSEA.rds")
# Load data.
pbmc <- readRDS("backup/05_024_pbmc6k_seurat_ssGSEA.rds")
Load the normalized data (see here) and correlation matrix.
pbmc <- readRDS("backup/05_003_pbmc6k_normalized.rds")
cormat <- readRDS("backup/05_003_pbmc6k_cormat.rds")
Load the MSigDB.
urlpath <- "https://github.com/keita-iida/ASURATDB/blob/main/genes2bioterm/"
load(url(paste0(urlpath, "20220308_human_MSigDB.rda?raw=TRUE"))) # MSigDB
Perform ASURAT protocols.
# Create a sign-by-sample matrix.
pbmcs <- list(CB = pbmc)
metadata(pbmcs$CB) <- list(sign = human_MSigDB$cell)
pbmcs$CB <- remove_signs(sce = pbmcs$CB, min_ngenes = 2, max_ngenes = 1000)
set.seed(1)
pbmcs$CB <- cluster_genesets(sce = pbmcs$CB, cormat = cormat,
th_posi = 0.22, th_nega = -0.20)
pbmcs$CB <- create_signs(sce = pbmcs$CB, min_cnt_strg = 5, min_cnt_vari = 5)
pbmcs$CB <- makeSignMatrix(sce = pbmcs$CB, weight_strg = 0.5, weight_vari = 0.5)
# Perform dimension reduction (t-SNE).
set.seed(1)
mat <- t(as.matrix(assay(pbmcs$CB, "counts")))
res <- Rtsne::Rtsne(mat, dim = 2, pca = TRUE, initial_dims = 50)
reducedDim(pbmcs$CB, "TSNE") <- res[["Y"]]
# Perform dimension reduction (UMAP).
set.seed(1)
mat <- t(as.matrix(assay(pbmcs$CB, "counts")))
res <- umap::umap(mat, n_components = 2)
reducedDim(pbmcs$CB, "UMAP") <- res[["layout"]]
# Perform a cell clustering.
surt <- Seurat::as.Seurat(pbmcs$CB, counts = "counts", data = "counts")
mat <- as.matrix(assay(pbmcs$CB, "counts"))
surt[["SSM"]] <- Seurat::CreateAssayObject(counts = mat)
Seurat::DefaultAssay(surt) <- "SSM"
surt <- Seurat::ScaleData(surt, features = rownames(surt))
surt <- Seurat::RunPCA(surt, features = rownames(surt))
surt <- Seurat::FindNeighbors(surt, reduction = "pca", dims = seq_len(40))
surt <- Seurat::FindClusters(surt, resolution = 0.15)
temp <- Seurat::as.SingleCellExperiment(surt)
colData(pbmcs$CB)$seurat_clusters <- colData(temp)$seurat_clusters
# Show the clustering results in low-dimensional spaces.
labels <- colData(pbmcs$CB)$seurat_clusters
df <- as.data.frame(reducedDim(pbmcs$CB, "UMAP"))
p <- ggplot2::ggplot() +
ggplot2::geom_point(ggplot2::aes(x = df[, 1], y = df[, 2], color = labels),
size = 1, alpha = 1) +
ggplot2::labs(title = "PBMC 6k (ASURAT using MSigDB)",
x = "UMAP_1", y = "UMAP_2", color = "") +
ggplot2::theme_classic(base_size = 20) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5, size = 18)) +
ggplot2::guides(colour = ggplot2::guide_legend(override.aes = list(size = 4)))
filename <- "figures/figure_05_0299.png"
ggplot2::ggsave(file = filename, plot = p, dpi = 50, width = 5.1, height = 4.3)
# Compute separation indices for each cluster against the others.
set.seed(1)
labels <- colData(pbmcs$CB)$seurat_clusters
pbmcs$CB <- compute_sepI_all(sce = pbmcs$CB, labels = labels, nrand_samples = NULL)
# Compute differentially expressed genes.
set.seed(1)
surt <- Seurat::as.Seurat(pbmcs$CB, counts = "counts", data = "counts")
mat <- as.matrix(assay(altExp(pbmcs$CB), "counts"))
surt[["GEM"]] <- Seurat::CreateAssayObject(counts = mat)
Seurat::DefaultAssay(surt) <- "GEM"
surt <- Seurat::SetIdent(surt, value = "seurat_clusters")
res <- Seurat::FindAllMarkers(surt, only.pos = TRUE,
min.pct = 0.25, logfc.threshold = 0.25)
metadata(pbmcs$CB)$marker_genes$all <- res
# Save data.
saveRDS(pbmcs, file = "backup/05_025_pbmc6k_asurat_msigdb.rds")
# Load data.
pbmcs <- readRDS("backup/05_025_pbmc6k_asurat_msigdb.rds")
Load the normalized data (see here).
pbmc <- readRDS("backup/05_003_pbmc6k_normalized.rds")
Create Monocle 3 objects (cell_data_set (CDS)).
gene_metadata <- data.frame(gene_short_name = rowData(pbmc)$gene)
rownames(gene_metadata) <- rowData(pbmc)$gene
pbmc <- monocle3::new_cell_data_set(
expression_data = as.matrix(assay(pbmc, "counts")),
cell_metadata = colData(pbmc),
gene_metadata = gene_metadata)
Preprocess the data under the default settings of Monocle 3 (version
1.0.0), e.g., num_dim = 50
and norm_method = "log"
.
pbmc <- monocle3::preprocess_cds(pbmc)
Perform log-normalization with a pseudo count.
assay(pbmc, "logcounts") <- monocle3::normalized_counts(pbmc,
norm_method = "log",
pseudocount = 1)
Perform dimensionality reduction.
#pbmc <- monocle3::reduce_dimension(pbmc, reduction_method = "tSNE",
# preprocess_method = "PCA")
pbmc <- monocle3::reduce_dimension(pbmc, reduction_method = "UMAP",
preprocess_method = "PCA")
Group cells into several clusters by using a community detection algorithm.
#pbmc <- monocle3::cluster_cells(pbmc, resolution = 5e-4, reduction_method = "tSNE")
pbmc <- monocle3::cluster_cells(pbmc, resolution = 2e-4, reduction_method = "UMAP")
Show the clustering results.
title <- "PBMC 6k (Monocle 3)"
labels <- pbmc@clusters@listData[["UMAP"]][["clusters"]]
df <- reducedDim(pbmc, "UMAP")
p <- ggplot2::ggplot() +
ggplot2::geom_point(ggplot2::aes(x = df[, 1], y = df[, 2], color = labels),
size = 1, alpha = 1) +
ggplot2::labs(title = title, x = "UMAP_1", y = "UMAP_2", color = "") +
ggplot2::theme_classic(base_size = 20) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5, size = 18)) +
ggplot2::scale_colour_hue() +
ggplot2::guides(colour = ggplot2::guide_legend(override.aes = list(size = 4)))
filename <- "figures/figure_05_0330.png"
ggplot2::ggsave(file = filename, plot = p, dpi = 50, width = 5.1, height = 4.3)
Find differentially expressed genes.
set.seed(1)
metadata(pbmc)$markers <- monocle3::top_markers(pbmc, group_cells_by = "cluster",
reference_cells = 1000, cores = 2)
markers <- metadata(pbmc)$markers
markers <- markers[order(markers$cell_group, markers$marker_test_q_value), ]
View(markers[which(markers$marker_test_q_value < 10^(-100)), ])
Defining significant genes as genes with marker_teset_q_value\<1e-100, infer cell types using GeneCards.
1: T cell # CD3D (marker_teset_q_value ~e-154)
# CD3E (marker_teset_q_value ~e-120)
2: Monocyte # LYZ (marker_teset_q_value ~0)
# S100A9 (marker_teset_q_value ~e-312)
3: B cell # CD79A (marker_teset_q_value ~e-249)
# CD79B (marker_teset_q_value ~e-214)
4: NK/NKT # NKG7 (marker_teset_q_value ~e-299)
# GZMA (marker_teset_q_value ~e-199)
5: Unspecified # No significant genes are detected.
6: Unspecified # No significant genes are detected.
tmp <- as.integer(as.character(pbmc@clusters@listData[["UMAP"]][["clusters"]]))
colData(pbmc)$cell_type <- tmp
colData(pbmc)$cell_type[colData(pbmc)$cell_type == 1] <- "T"
colData(pbmc)$cell_type[colData(pbmc)$cell_type == 2] <- "Mono"
colData(pbmc)$cell_type[colData(pbmc)$cell_type == 3] <- "B"
colData(pbmc)$cell_type[colData(pbmc)$cell_type == 4] <- "NK/NKT"
colData(pbmc)$cell_type[colData(pbmc)$cell_type == 5] <- "Unspecified"
colData(pbmc)$cell_type[colData(pbmc)$cell_type == 6] <- "Unspecified"
Show the annotation results in low-dimensional spaces.
title <- "PBMC 6k (Monocle 3)"
labels <- factor(colData(pbmc)$cell_type,
levels = c("T", "Mono", "B", "NK/NKT", "Unspecified"))
mycolor <- scales::hue_pal()(5)
mycolor <- c("T" = mycolor[1], "Mono" = mycolor[2], "NK/NKT" = mycolor[3],
"B" = mycolor[4], "Unspecified" = "grey80")
df <- reducedDim(pbmc, "UMAP")
p <- ggplot2::ggplot() +
ggplot2::geom_point(ggplot2::aes(x = df[, 1], y = df[, 2], color = labels),
size = 1, alpha = 1) +
ggplot2::labs(title = title, x = "UMAP_1", y = "UMAP_2", color = "Cell type") +
ggplot2::theme_classic(base_size = 20) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5, size = 18)) +
ggplot2::scale_color_manual(values = mycolor) +
ggplot2::guides(colour = ggplot2::guide_legend(override.aes = list(size = 4)))
filename <- "figures/figure_05_0340.png"
ggplot2::ggsave(file = filename, plot = p, dpi = 50, width = 6.1, height = 4.3)
# Save data.
saveRDS(pbmc, file = "backup/05_031_pbmc6k_monocle3.rds")
# Load data.
pbmc <- readRDS("backup/05_031_pbmc6k_monocle3.rds")
Load the normalized data (see here).
pbmc <- readRDS("backup/05_003_pbmc6k_normalized.rds")
Prepare a SingleCellExperiment object.
mat <- as.matrix(assay(pbmc, "counts"))
pbmc <- SingleCellExperiment(assays = list(counts = as.matrix(mat),
logcounts = log2(mat + 1)),
rowData = data.frame(gene = rownames(mat)),
colData = data.frame(sample = colnames(mat)))
rowData(pbmc)$feature_symbol <- rownames(pbmc)
Run sc3()
, in which parameter ks
is subjectively determined by
considering biological backgrounds. Here, sc3()
could not compute for
sc68_vehi
and sc68_cisp
.
set.seed(1)
pbmc <- SC3::sc3(pbmc, ks = 4:8, biology = TRUE)
Plot stability indices across ks
for investigating “optimal” number of
clusters.
kss <- as.integer(names(metadata(pbmc)$sc3$consensus))
for(i in seq_along(kss)){
p <- SC3::sc3_plot_cluster_stability(pbmc, k = kss[i])
p <- p + ggplot2::labs(title = paste0("PBMC 6k (SC3) k = ", kss[i])) +
ggplot2::theme_classic(base_size = 20) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5, size = 18))
filename <- sprintf("figures/figure_05_%04d.png", 409 + i)
ggplot2::ggsave(file = filename, plot = p, dpi = 50, width = 5, height = 4)
}
Setting the optimal number of clusters, find differentially expressed genes.
row_data <- rowData(pbmc)
markers <- as.data.frame(row_data[ , grep("gene|sc3_4", colnames(row_data))])
markers <- markers[order(markers$sc3_4_markers_clusts, markers$sc3_4_de_padj), ]
View(markers[which(markers$sc3_4_de_padj < 10^(-100)), ])
Defining significant genes as genes with sc3_4_de_padj\<1e-100, infer cell types using GeneCards.
1: T cell # CD3E (sc3_4_de_padj ~0)
# CD3D (sc3_4_de_padj ~0)
2: Monocyte # S100A9 (sc3_4_de_padj ~0)
# S100A8 (sc3_4_de_padj ~0)
3: B cell # CD74 (sc3_4_de_padj ~0)
# CD79B (sc3_4_de_padj ~0)
4: NK/NKT cell # GZMA (sc3_4_de_padj ~0)
# GZMB (sc3_4_de_padj ~0)
col_data <- colData(pbmc)
clusters <- col_data[ , grep("sc3_4_clusters", colnames(col_data))]
colData(pbmc)$cell_type <- as.integer(as.character(clusters))
colData(pbmc)$cell_type[colData(pbmc)$cell_type == 1] <- "T"
colData(pbmc)$cell_type[colData(pbmc)$cell_type == 2] <- "Mono"
colData(pbmc)$cell_type[colData(pbmc)$cell_type == 3] <- "B"
colData(pbmc)$cell_type[colData(pbmc)$cell_type == 4] <- "NK/NKT"
colData(pbmc)$cell_type[is.na(colData(pbmc)$cell_type)] <- "Unspecified"
# Save data.
saveRDS(pbmc, file = "backup/05_041_pbmc6k_sc3.rds")
# Load data.
pbmc <- readRDS("backup/05_041_pbmc6k_sc3.rds")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.