# konfound-glm
#' Konfound Analysis for Generalized Linear Models
#'
#' This function performs konfound analysis on a generalized linear model
#' object. It uses 'broom' to tidy model outputs and calculates the sensitivity
#' of inferences. It supports analysis for a single variable
#' or multiple variables.
#'
#' @param model_object The model object produced by glm.
#' @param tested_variable_string The name of the variable being tested.
#' @param alpha Significance level for hypothesis testing.
#' @param tails Number of tails for the test (1 or 2).
#' @param index Type of sensitivity analysis ('RIR' by default).
#' @param to_return The type of output to return.
#' @return The results of the konfound analysis for the specified variable(s).
#' @importFrom broom tidy glance
#' @importFrom dplyr select filter bind_cols
#' @importFrom stats glm
konfound_glm <- function(model_object,
tested_variable_string,
alpha, tails,
index = "RIR",
to_return) {
tidy_output <- broom::tidy(model_object) # tidying output
glance_output <- broom::glance(model_object)
coef_df <- tidy_output[tidy_output$term == tested_variable_string, ]
est_eff <- coef_df$estimate
warning("Due to an issue with the margins and predictions package, these are the raw coefficients, not the average marginal effects; we will address this in future patches")
# est_eff <- suppressWarnings(
# summary(margins::margins(model_object))$AME[names(summary(
# margins::margins(model_object))$AME) == tested_variable_string])
std_err <- coef_df$std.error
n_obs <- glance_output$nobs
n_covariates <- glance_output$df.null - glance_output$df.residual
out <- test_sensitivity(
est_eff = est_eff,
std_err = std_err,
n_obs = n_obs,
n_covariates = n_covariates,
alpha = alpha,
tails = tails,
index = index,
nu = 0,
to_return = to_return,
model_object = model_object,
tested_variable = tested_variable_string)
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.