# konfound-glm
#' Konfound Analysis for Generalized Linear Models with Dichotomous Outcomes
#'
#' This function performs konfound analysis on a generalized linear model
#' object with a dichotomous outcome. It uses 'broom' to tidy model outputs
#' and calculates the sensitivity of inferences.
#'
#' @param model_object The model object produced by glm.
#' @param tested_variable_string The name of the variable being tested.
#' @param alpha Significance level for hypothesis testing.
#' @param tails Number of tails for the test (1 or 2).
#' @param to_return The type of output to return.
#' @param n_treat Number of treatment cases.
#' @param switch_trm Term to switch for sensitivity analysis.
#' @param replace Boolean indicating whether to replace cases or not.
#' @return The results of the konfound analysis.
#' @importFrom broom tidy glance
#' @importFrom stats glm
konfound_glm_dichotomous <- function(model_object,
tested_variable_string,
alpha, tails,
to_return,
n_treat,
switch_trm,
replace) {
tidy_output <- broom::tidy(model_object) # tidying output
glance_output <- broom::glance(model_object)
coef_df <- tidy_output[tidy_output$term == tested_variable_string, ]
est_eff <- coef_df$estimate
std_err <- coef_df$std.error
n_obs <- glance_output$nobs
n_covariates <- glance_output$df.null - glance_output$df.residual
out <- test_sensitivity_ln(
est_eff = est_eff,
std_err = std_err,
n_obs = n_obs,
n_covariates = n_covariates,
n_treat = n_treat,
switch_trm = switch_trm,
replace = replace,
alpha = alpha,
tails = tails,
nu = 0,
to_return = to_return,
model_object = model_object,
tested_variable = tested_variable_string
)
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.