# Function to output the data frame
#' Output data frame based on model estimates and thresholds
#'
#' @param est_eff estimated effect
#' @param beta_threshhold threshold for beta
#' @param unstd_beta unstandardized beta value
#' @param bias bias to change inference
#' @param sustain sustain to change inference
#' @param recase number of cases to replace null
#' @param obs_r observed correlation
#' @param critical_r critical correlation
#' @param r_con correlation for omitted variable
#' @param itcv inferential threshold for confounding variable
#' @param non_linear flag for non-linear models
#' @return data frame with model information
#' @importFrom dplyr tibble
output_df <- function(est_eff,
beta_threshhold,
unstd_beta,
bias = NULL,
sustain = NULL,
recase, obs_r,
critical_r,
r_con,
itcv,
non_linear) {
if (abs(est_eff) > abs(beta_threshhold)) {
df <- dplyr::tibble(
action = "to_invalidate",
inference = "reject_null",
percent_bias_to_change_inference = round(bias, 3),
replace_null_cases = round(recase, 3),
unstd_beta = unstd_beta,
beta_threshhold = beta_threshhold,
omitted_variable_corr = r_con,
itcv = itcv
)
}
else if (abs(est_eff) < abs(beta_threshhold)) {
df <- dplyr::tibble(
action = "to_sustain",
inference = "fail_to_reject_null",
percent_bias_to_change_inference = round(sustain, 3),
replace_null_cases = round(recase, 3),
unstd_beta = unstd_beta,
beta_threshhold = beta_threshhold,
omitted_variable_corr = r_con,
itcv = itcv
)
}
else if (est_eff == beta_threshhold) {
warning("The coefficient is exactly equal to the threshold.")
}
# if (abs(obs_r) > abs(critical_r)) {
# df$omitted_variable_corr <- r_con
# }
# else if (abs(obs_r) < abs(critical_r)) {
# df$omitted_variable_corr <- r_con
# }
else if (est_eff == beta_threshhold) {
warning("The coefficient is exactly equal to the threshold.\n")
}
df
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.