library(cola)
library(GetoptLong)
set.seed(123)
m = cbind(rbind(matrix(rnorm(20*20, mean = 1, sd = 0.5), nr = 20),
matrix(rnorm(20*20, mean = 0, sd = 0.5), nr = 20),
matrix(rnorm(20*20, mean = 0, sd = 0.5), nr = 20)),
rbind(matrix(rnorm(20*20, mean = 0, sd = 0.5), nr = 20),
matrix(rnorm(20*20, mean = 1, sd = 0.5), nr = 20),
matrix(rnorm(20*20, mean = 0, sd = 0.5), nr = 20)),
rbind(matrix(rnorm(20*20, mean = 0.5, sd = 0.5), nr = 20),
matrix(rnorm(20*20, mean = 0.5, sd = 0.5), nr = 20),
matrix(rnorm(20*20, mean = 1, sd = 0.5), nr = 20))
) + matrix(rnorm(60*60, sd = 0.5), nr = 60)
cola_rl = run_all_consensus_partition_methods(data = m,
top_value_method = c("SD", "MAD"), partition_method = c("hclust", "kmeans"),
mc.cores = 4)
# save(cola_rl, file = qq("~/project/development/cola/data/cola_rl.rda"), compress = "xz")
cola_report(cola_rl, qq("~/cola_test/cola_rl_report"), mc.cores = 4)
set.seed(123)
m = cbind(rbind(matrix(rnorm(20*20, mean = 2, sd = 0.3), nr = 20),
matrix(rnorm(20*20, mean = 0, sd = 0.3), nr = 20),
matrix(rnorm(20*20, mean = 0, sd = 0.3), nr = 20)),
rbind(matrix(rnorm(20*20, mean = 0, sd = 0.3), nr = 20),
matrix(rnorm(20*20, mean = 1, sd = 0.3), nr = 20),
matrix(rnorm(20*20, mean = 0, sd = 0.3), nr = 20)),
rbind(matrix(rnorm(20*20, mean = 0, sd = 0.3), nr = 20),
matrix(rnorm(20*20, mean = 0, sd = 0.3), nr = 20),
matrix(rnorm(20*20, mean = 1, sd = 0.3), nr = 20))
) + matrix(rnorm(60*60, sd = 0.5), nr = 60)
cola_rh = hierarchical_partition(m)
# save(cola_rh, file = qq("~/project/development/cola/data/cola_rh.rda"), compress = "xz")
cola_report(cola_rh, qq("~/cola_test/cola_rh_report"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.