
GenomicVis

Jonathan J. Ellis and Lutz Krause

July 2, 2014

Contents

1 Kataegis 1
1.1 Kataegis Detection . 3

1.1.1 Piecewise Constant Curve Fitting Detection . 3
1.1.2 Brute Force Detection . 3

2 SNV Clustering 3

3 SNV Heatmaps 4

4 SNV Venn Diagrams 5

5 CNV Plots 6

6 CNV Heatmaps 7

7 Example Datasets 8

8 Session Information 10

The GenomicVis package contains a collection of function for the visualisation of genomic data typically
derived from high-throughput whole genome sequencing and SNP-Chip experiments. Most of the functions
provided by this package are agnostic about where the data actually comes from, that is, they required
input in simple data.frame instances that are not tied to a particular file format; however, we also provide
many examples of creating these simply data.frames from standard file formats such as VCFs and from
common software tools such as GAP and Breakdancer.

library(GenomicVis)

1 Kataegis

The package detects and visualises kataegis from single nucleotide variations (SNVs). The package currently
implements two different algorithms to detect kataegis and visualises SNVs as rainfall plots. To create a
rainfall plot, you do not necessarily need to identify regions of kataegis first. To create a rainfall plot, you
need to have your SNVs in a GRanges instance containing only SNVs (i.e., no INDELs) with single ALT
alleles. The GRanges instance must also contain a valid Seqinfo instance that provides the lengths of the
chromosomes. The easiest way to obtain the appropriate instance from a VCF file is to use the read.vcf

function in the GenomicVis package. This function returns a

1

GenomicVis 2

We need to import VariantAnnotation to get access to rowData

suppressMessages(library(VariantAnnotation))

vcf.file <- system.file('extdata', 'example.vcf', package = 'GenomicVis')

vcf <- read.vcf(vcf.file, 'GRCh37')

x <- rowData(vcf)

plotKataegis(x)

Genomic Position

lo
g(

G
en

om
ic

 D
is

ta
nc

e)

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09 3e+09

0

1

2

3

4

5

6

7

To create a kataegis plot of each VCF in the current directory, you could use the following code:

vcf.files <- list.vcffiles()

for (vcf.file in vcf.files) {
vcf <- read.vcf(vcf.file, 'GRCh37')

x <- rowData(vcf)

kat <- kataegis(x)

name <- tools::file_path_sans_ext(vcf.file)

GenomicVis 3

png(file = paste0(name, '.png'))

plotKataegis(x, main = name)

dev.off()

}

1.1 Kataegis Detection

To detect regions of kataegis, use the kataegis function. This take the same GRanges instance as
plotKataegis, and returns another GRanges instance containing the kataegis regions. There are two
different algorithms for the detection of kataegis: one that uses piecewise constant curve fitting and one
that uses a brute force approach.

1.1.1 Piecewise Constant Curve Fitting Detection

kat <- kataegis(x, pcf = TRUE, ncpus = 4)

1.1.2 Brute Force Detection

kat <- kataegis(x, ncpus = 4)

2 SNV Clustering

file.names <- sprintf('LC%s_TUMOUR_%s.vcf', rep(1:3, each = 2),

rep(c('A', 'B'), each = 3))

vcf.files <- system.file('extdata', file.names, package = 'GenomicVis')

sample.names <- tools::file_path_sans_ext(basename(vcf.files))

snv.clustering(vcf.files, sample.names, genome = 'hg19')

GenomicVis 4

LC
3_

T
U

M
O

U
R

_B

LC
1_

T
U

M
O

U
R

_A

LC
2_

T
U

M
O

U
R

_A

LC
2_

T
U

M
O

U
R

_B

3 SNV Heatmaps

file.names <- c('LC1_A.snpeff.vcf', 'LC1_B.snpeff.vcf',

'LC1_C.snpeff.vcf', 'LC1_D.snpeff.vcf')

vcf.files <- system.file('extdata', file.names, package = 'GenomicVis')

sample.names <- c('LC1_A', 'LC1_B', 'LC1_C', 'LC1_D')

dat <- read.snpeff.vcfs(vcf.files, 'GRCh37', sample.names)

snv.heatmap(dat, margins = c(5, 9), y.cex.axis = 0.7)

GenomicVis 5

LC
1_

A

LC
1_

B

LC
1_

C

LC
1_

D

ARHGEF5
CCDC24
FBXL7
FOXG1
HEATR2
KIAA0922
METTL24
OR5H15
PCLO
PCSK4
PLEKHG6
POTEJ
RBMX
SOX11
SRSF4
STOML3
THBS2
ALAS1
CCDC171
CCDC7
CDC73
DOCK6
HCG4B
IL1RAPL1
LILRB3
LRRC25
PARP4
PSMC5
RARS2
SH3BP5
TPSAB1
XIAP
ANKRD20A4
CDC42EP1
DDX11
SLC9B1
STOX1
DACT1
DNAH9
EML3
FAT4
HAVCR1
KIAA0947
KIAA1257
OTOG
ZNF417
ZNF449
BCAR1
CENPH
XIRP1
KBTBD6
NBPF14
CNPY2
EP400
ZSWIM6
NSD1
RBM26
UTP14C
DNHD1
KRT6A

4 SNV Venn Diagrams

library(Vennerable)

file.names <- c('LC1_TUMOUR_A.vcf', 'LC1_TUMOUR_B.vcf')

vcf.files <- system.file('extdata', file.names, package = 'GenomicVis')

sample.names <- c('LC1_A', 'LC1_B')

v <- vcf.venn(vcf.files, 'GRCh37', sample.names)

plot(v$venn)

GenomicVis 6

LC1_A LC1_B

135162 69

5 CNV Plots

LC1 TUMOUR A FinalReport.txt is the final report file produced by GenomeStudio from the SNP-Chips.

Breakdancer was run on the germline and tumour sample at the same time, i.e., the file contains calls from
both samples. The file names that were input to Breakdancer contain the strings BLOOD and TUMOUR to
indicate the normal and tumour samples respectively.

data(SNPExample)

data(CNVExample)

data(SVExample)

cnv.plot('18', SNPExample, CNVExample, SVExample)

Found 13 SVs to plot

GenomicVis 7

Chromosome 18

 0 20000 30000 50000 60000 80000

kb

B
A

F
C

N
A

LR
R

6 CNV Heatmaps

The genes.gr argument can easily be built from available Bioconductor packages. The following code
shows how you could build the appropriate GRanges instance for human hg19 data.

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

library(org.Hs.eg.db)

genes.gr <- genes(TxDb.Hsapiens.UCSC.hg19.knownGene)

gene_ids <- unlist(genes.gr$gene_id)

symbol.map <- select(org.Hs.eg.db, gene_ids, 'SYMBOL')

genes.gr$symbol <- symbol.map$SYMBOL

The data set hg19.Genes.GRanges contains human genes with the appropriate gene symbols.

GenomicVis 8

data(hg19Genes)

data(CNVData)

set.seed(100)

g <- sample(hg19Genes$symbol, 20)

cnv.heatmap(CNVData, symbols = g, genes.gr = hg19Genes)

●

LC
3_

A

LC
3_

B

LC
3_

C

N4BP2L1

DYNC1I2

TARS2

HOMER3

LYPD3

HEY2

CCNT2

MIR1908

TTC28−AS1

PLEKHA2

LIG3 1

LIG3 2

AFAP1L1

FLJ22763

FKBP4

LOC595101

PYDC1

MIR1248

To just use a subset of samples.

cnv.heatmap(CNVData, samples = c('LC3_A', 'LC3_B'), genes.gr = hg19Genes)

7 Example Datasets

The previous sections of this vignette have relied on prepared datasets distributed with the package. While
these provide examples of the inputs required by the various plotting functions of this package, they do not

GenomicVis 9

provide guidance on how to create them from the various files produced by HTS software.

This section explains how each of the example data sets were created. Typically, they were created from
standard file formats such as VCF or the output from particular software such as GAP or Breakdancer.

hg19Genes contains the ranges (start, end) positions of human RefSeq genes and corresponding gene
symbols. The BED file used was downloaded from the UCSC Genome Browser web site.

library(org.Hs.eg.db)

library(GenomicRanges)

library(plyr)

x <- read.delim(

'hg19_refGene.bed.gz',

header = FALSE,

stringsAsFactors = FALSE

)

x <- x[x$V1 %in% paste0("chr", c(1:22, 'X', 'Y')),]

keys <- x$V4

dict <- select(org.Hs.eg.db, keys, 'SYMBOL', keytype = 'REFSEQ')

symbol.df <- ddply(dict, .(REFSEQ), summarise,

symbol = paste(unique(SYMBOL), collapse = ';'))

rownames(symbol.df) <- symbol.df$REFSEQ

x$symbol <- symbol.df[x$V4,]$symbol

hg19Genes <- GRanges(

seqnames = Rle(x$V1),

ranges = IRanges(start = x$V2, end = x$V3),

strand = Rle(x$V6),

refseq = x$V4,

symbol = x$symbol

)

CNVExample was built from the output of GAP, specifically two files named CN BA Illumina MySeries.txt

and Illum660K annot cut.csv; although the exact names of these files will depend on the exact settings
you use when running GAP.

CNVExample <- read.gap(

system.file('extdata', 'CN_BA_Illumina_MySeries.chr18.txt',

package = 'GenomicVis'),

system.file('extdata', 'Illum660K_annot_cut.chr18.csv',

package = 'GenomicVis'),

'LC3_TUMOUR_C_FinalReport'

)

LC1 TUMOUR A FinalReport.txt is the final report file produced by GenomeStudio from the SNP-Chips.

filename <- system.file('extdata', 'LC3_TUMOUR_C_FinalReport.chr18.txt',

package = 'GenomicVis')

SNPExample <- read.illumina(filename)

SVData contains structural variant data obtained from Breakdancer. Breakdancer was run on the germline
and tumour sample at the same time, that is, the file contains calls from both samples. The file names
that were input to Breakdancer contain the strings BLOOD and TUMOUR to indicate the normal and tumour
samples respectively.

GenomicVis 10

SVExample <- read.breakdancer(

system.file('extdata', 'LC3_BLOOD_TUMOUR_C.chr18.txt',

package = 'GenomicVis'),

normal.regex = 'BLOOD'

)

SVExample <- filter.breakdancer(SVExample)

CNVData was also prepared from the output of GAP.

gap <- read.gap()

CNVData <- gap2cnv(gap)

CNVData <- CNVData[, c('Chr', 'Begin', 'End', 'LC3_TUMOUR_A_FinalReport',

'LC3_TUMOUR_B_FinalReport', 'LC3_TUMOUR_C_FinalReport')]

colnames(CNVData) <- sub('_TUMOUR', '', colnames(CNVData))

colnames(CNVData) <- sub('_FinalReport', '', colnames(CNVData))

8 Session Information

R version 3.1.0 (2014-04-10)

Platform: x86_64-unknown-linux-gnu (64-bit)

##

locale:

[1] LC_CTYPE=en_AU.UTF-8 LC_NUMERIC=C LC_TIME=en_AU.UTF-8

[4] LC_COLLATE=C LC_MONETARY=en_AU.UTF-8 LC_MESSAGES=en_AU.UTF-8

[7] LC_PAPER=en_AU.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C

##

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods base

##

other attached packages:

[1] VariantAnnotation_1.10.2 Rsamtools_1.16.1 Biostrings_2.32.0

[4] XVector_0.4.0 GenomicRanges_1.16.3 GenomeInfoDb_1.0.2

[7] IRanges_1.22.9 BiocGenerics_0.10.0 GenomicVis_1.0

##

loaded via a namespace (and not attached):

[1] AnnotationDbi_1.26.0 BBmisc_1.6 BSgenome_1.32.0

[4] BatchJobs_1.2 Biobase_2.24.0 BiocParallel_0.6.1

[7] BiocStyle_1.2.0 DBI_0.2-7 GenomicAlignments_1.0.1

[10] GenomicFeatures_1.16.2 RColorBrewer_1.0-5 RCurl_1.95-4.1

[13] RSQLite_0.11.4 Rcpp_0.11.2 XML_3.98-1.1

[16] biomaRt_2.20.0 bitops_1.0-6 brew_1.0-6

[19] codetools_0.2-8 data.table_1.9.2 digest_0.6.4

[22] evaluate_0.5.5 fail_1.2 foreach_1.4.2

[25] formatR_0.10 grid_3.1.0 highr_0.3

[28] iterators_1.0.7 knitr_1.6 plyr_1.8.1

[31] reshape2_1.4 rtracklayer_1.24.2 sendmailR_1.1-2

[34] stats4_3.1.0 stringr_0.6.2 tools_3.1.0

[37] zlibbioc_1.10.0

	1 Kataegis
	1.1 Kataegis Detection
	1.1.1 Piecewise Constant Curve Fitting Detection
	1.1.2 Brute Force Detection

	2 SNV Clustering
	3 SNV Heatmaps
	4 SNV Venn Diagrams
	5 CNV Plots
	6 CNV Heatmaps
	7 Example Datasets
	8 Session Information

