#' @export
raid_analysis_splitreads <- function(experiment_dir, data) {
## First set working directory to experiment folder
setwd(experiment_dir)
## Location of the log files
futile.logger::flog.appender(
futile.logger::appender.file("output/exp_log/experimental_info.log"),
name = "1")
futile.logger::flog.layout(futile.logger::layout.tracearg, name = "1")
futile.logger::flog.appender(
futile.logger::appender.file("output/exp_log/Run_info.log"), name = "2")
futile.logger::flog.layout(futile.logger::layout.tracearg, name = "2")
## Log info
futile.logger::flog.info(
"Start experiment %s analysis", data, name = "1")
futile.logger::flog.info(
"Import reads from experiment: %s", data, name = "2")
## Import the total split
raid_split_reads <- raid_import_split_data(data)
## Log info
split_reads_total <- nrow(raid_split_reads)
futile.logger::flog.info("Total split reads in %s: %d",
data, split_reads_total, name = "1")
## Count row occurence and save tbl
futile.logger::flog.info("Counting row occurence ... ", name = "2")
UMI_count <- raid_umi_count(split_data_file_path = data, raid_barcode_tbl = raid_split_reads)
## Log info
unique_reads_total <- nrow(UMI_count)
futile.logger::flog.info("Total unique reads in %s: %d",
data, unique_reads_total, name = "1")
## Create UMI frequency table
futile.logger::flog.info("Create UMI frequency tbl", name = "2")
UMI_count_frequency <- raid_umi_count_frequency(split_data_file_path = data, UMI_count_input = UMI_count)
## Count UMI per barcode1
futile.logger::flog.info(
strwrap(
"Counting total unique UMI strings per barcode1"),
name = "2")
barcode_count <- raid_barcode_count(split_data_file_path = data, UMI_count_tbl = UMI_count)
barcode_count_matched <- raid_barcode_match(data, barcode_count_tbl = barcode_count)
#futile.logger::flog.info("Create plots", name = "2")
## Create plot of barcode counts (which shows the distribution of
## counts)
#ggplot2::ggplot(data = barcode_count, aes(antibody_count)) +
# ggplot2::geom_histogram(binwidth = 10) # +
# xlim(0, 800) + ylim(0,10000)
#ggplot2::ggsave(
# "output/figures/barcode_count_histogram.eps", width = 5, height = 5)
## create plot of the UMI distribution
#ggplot2::ggplot(data = UMI_count_frequency,
# aes(x = row_occurence_count, y = count_frequency)) +
# ggplot2::geom_point() +
# ggplot2::xlab("UMI occurence") + ggplot2::ylab("frequency") +
# ggplot2::scale_y_log10() + ggplot2::theme_bw()
#ggplot2::ggsave("output/figures/UMI_frequency.eps", width = 5, height = 5)
futile.logger::flog.info("Finished analysis", name = "1")
futile.logger::flog.info("Finished analysis", name = "2")
barcode_count_matched
#barcode_count
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.