# setwd("E:/project/hPOP/hPOP-HILIC-POS-MS2/MS1")
# processData(
# path = ".",
# polarity = "negative",
# ppm = 25,
# peakwidth = c(5, 30),
# noise = 5000,
# threads = 6
# )
#
# load("Result/raw_data")
# peak_table <- readr::read_csv("Result/Peak.table.csv")
#
# #####mz distribution
# library(tidyverse)
#
# mz <- peak_table$mzmed
# mz <- sort(mz)
# mz <- as.data.frame(mz)
#
# cut.point <- round(seq(1, nrow(mz), length.out = 5))
# cut.mz <- mz[cut.point, ]
#
#
# round(nrow(mz) / 4)
#
# library(ggplot2)
#
# plot <-
# ggplot(mz, aes(x = mz)) +
# geom_histogram(binwidth = 1) +
# theme_bw() +
# geom_vline(xintercept = cut.mz, colour = "red") +
# annotate(
# geom = "text",
# x = cut.mz,
# y = 20,
# label = round(cut.mz, 4),
# colour = "red"
# )
#
# export::graph2ppt(plot, "segment", width = 8, height = 6)
#
#
#
#
# peak_table <- peak_table %>%
# filter(., !is.na(QC_N.1)) %>%
# filter(., rank(desc(QC_N.1)) <= 50)
# # write.csv(peak_table, "Peak_table.csv")
# # colnames(peak_table)
#
# mz <- peak_table$mzmed
# rt <- peak_table$rtmed
#
# mz_range <- lapply(mz, function(x) {
# c(x - 12.5 * ifelse(x < 400, 400, x) / 10 ^ 6,
# x + 12.5 * ifelse(x < 400, 400, x) / 10 ^ 6)
# })
#
# rt_range <- lapply(rt, function(x) {
# c(x - 100, x + 100)
# })
#
# for (i in 1:50) {
# cat(i, " ")
# temp <- chromatogram(raw_data, mz = mz_range[[i]],
# rt = rt_range[[i]])
# png(
# filename = paste(i, "png", sep = "."),
# width = 8,
# height = 6,
# units = "in",
# res = 300
# )
# plot(temp)
# dev.off()
# }
#
#
#
#
#
#
# setwd("E:/project/hPOP/hPOP-HILIC-POS-MS2/NCE25/")
# ms2.file <- grep("mzXML", dir(), value = TRUE)
# ms2.data <- readMZXML(file = ms2.file, threads = 4)
#
#
# ms1.info <- lapply(ms2.data, function(x) {
# x[[1]]
# })
#
# ms1.info <- do.call(what = rbind, args = ms1.info)
# ms1.info <- as.data.frame(ms1.info)
# rownames(ms1.info) <- NULL
#
# duplicated.name <- unique(ms1.info$name[duplicated(ms1.info$name)])
# if (length(duplicated.name) > 0) {
# lapply(duplicated.name, function(x) {
# ms1.info$name[which(ms1.info$name == x)] <-
# paste(x, c(1:sum(ms1.info$name == x)), sep = "_")
# })
# }
#
#
# ms1.data.hilic.pos <- readr::read_csv(file = "Peak.table.csv",
# col_types = readr::cols())
# colnames(ms1.data)[1:3] <- c("name", "mz", "rt")
# match.result.hilic.pos <-
# SXTMTmatch(
# data1 = ms1.data.hilic.pos[, c(2, 3)],
# data2 = ms1.info[, c(2, 3)],
# mz.tol = 25,
# rt.tol = 10,
# rt.error.type = "abs"
# )
#
#
# match.result.hilic.pos <- as.data.frame(match.result.hilic.pos)
#
#
#
#
#
# library(tidyverse)
#
# library(plyr)
# temp.data1 <-
# plyr::dlply(.data = match.result.hilic.neg, .variables = .(Index1))
# temp.data2 <-
# plyr::dlply(.data = match.result.hilic.pos, .variables = .(Index1))
# temp.data3 <-
# plyr::dlply(.data = match.result.rplc.pos, .variables = .(Index1))
# temp.data4 <-
# plyr::dlply(.data = match.result.rplc.neg, .variables = .(Index1))
#
# count1 <- unlist(lapply(temp.data1, nrow))
# count1 <- unname(count1)
# count1 <- data.frame(count1)
#
# count2 <- unlist(lapply(temp.data2, nrow))
# count2 <- unname(count2)
# count2 <- data.frame(count2)
#
# count3 <- unlist(lapply(temp.data3, nrow))
# count3 <- unname(count3)
# count3 <- data.frame(count3)
#
# count4 <- unlist(lapply(temp.data4, nrow))
# count4 <- unname(count4)
# count4 <- data.frame(count4)
#
# colnames(count1) <-
# colnames(count2) <- colnames(count3) <- colnames(count4) <-
# "count"
#
# count <- rbind(
# data.frame(count1, "class" = "HILIC_NEG"),
# data.frame(count2, "class" = "HILIC.POS"),
# data.frame(count3, "class" = "RPLC_NEG"),
# data.frame(count4, "class" = "RPLC_POS")
# )
#
# library(ggplot2)
# plot1 <- ggplot(data = count) +
# geom_bar(mapping = aes(x = class, fill = factor(count)),
# position = "fill") +
# scale_x_discrete(name = "") +
# scale_y_continuous(name = "Percentage") +
# # annotate(geom = "text", x = c(1,2,3), y = c(table(count$count))/2, label = c(table(count$count)),
# # color = "white", size = 10) + theme_bw()+
# theme_bw() +
# guides(fill = guide_legend(title = "MS2 spectra number/peak"))
#
#
# temp.data <- data.frame(
# "HILIC_NEG" = length(unique(match.result.hilic.neg$Index1)) / nrow(ms1.data.hilic.neg),
# "HILIC_POS" = length(unique(match.result.hilic.pos$Index1)) / nrow(ms1.data.hilic.pos),
# "RPLC_NEG" = length(unique(match.result.rplc.neg$Index1)) / nrow(ms1.data.rplc.neg),
# "RPLC_POS" = length(unique(match.result.rplc.pos$Index1)) / nrow(ms1.data.rplc.pos) ,
# stringsAsFactors = FALSE
# )
#
#
# temp.data <- t(temp.data)
#
# colnames(temp.data) <- "coverage"
# temp.data <- as.data.frame(temp.data)
#
# temp.data <- data.frame("Class" = rownames(temp.data),
# temp.data,
# stringsAsFactors = FALSE)
#
# temp.data[, 2] <- temp.data[, 2] * 100
#
# plot2 <-
# ggplot(temp.data) +
# geom_bar(aes(y = coverage, x = Class, fill = Class), stat = "identity") +
# theme_bw()
#
#
# export::graph2ppt(plot1, "plot1", width = 8, height = 6)
# export::graph2ppt(plot2, "plot2", width = 8, height = 6)
#
# getwd()
#
# setwd("E:/project/MSMS optimization")
# peak.table.rplc <- readr::read_csv("QC10_RPLC/Peak_table.csv")
# rt1 <- peak.table.rplc$`Peak width`
#
# peak.table.hilic <- readr::read_csv("QC10_HILIC/Peak_table.csv")
# rt2 <- peak.table.hilic$`Peak width`
#
#
# rt <-
# rbind(
# data.frame(
# RT = rt1,
# LC = "RPLC",
# stringsAsFactors = FALSE
# ),
# data.frame(
# RT = rt2,
# LC = "HILIC",
# stringsAsFactors = FALSE
# )
# )
#
#
# library(ggplot2)
#
# rt <- filter(.data = rt, !is.na(RT))
# plot <- ggplot(data = rt, mapping = aes(x = LC, y = RT)) +
# geom_boxplot(fill = mypal[7]) +
# theme_bw() +
# labs(x = "LC", y = "Peak width (second)") +
# annotate(
# geom = "text",
# x = c(1, 2),
# y = c(43, 22),
# label = c("34.6 second", "18.4 second"),
# col = "white",
# size = 5
# )
#
# library(ggsci)
# mypal = pal_npg("nrc", alpha = 0.7)(9)
# mypal
# library("scales")
# show_col(mypal)
#
# plot <- plot +
# scale_fill_manual(values = mypal[3:4])
#
# mean(rt1, na.rm = TRUE)
# mean(rt2, na.rm = TRUE)
# export::graph2ppt(x = plot, file = "plot")
#
#
#
#
#
#
#
# library(tidyverse)
# peak.table <- readr::read_csv("Peak.table.csv")
#
# mz <- peak.table$mzmed
# mz <- sort(mz)
# mz <- as.data.frame(mz)
#
# cut.point <- round(seq(1, nrow(mz), length.out = 5))
# cut.mz <- mz[cut.point, ]
#
#
# round(nrow(mz) / 4)
#
# library(ggplot2)
#
# ggplot(mz, aes(x = mz)) +
# geom_histogram(binwidth = 1) +
# theme_bw() +
# geom_vline(xintercept = cut.mz, colour = "red") +
# annotate(
# geom = "text",
# x = cut.mz,
# y = 20,
# label = round(cut.mz, 4),
# colour = "red"
# )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.