knitr::opts_chunk$set( collapse = TRUE, comment = "#>", warning = FALSE, fig.path = "man/figures/" )
library("badger")
cat( badge_cran_release("MetNormalizer", "green"), badge_code_size(ref = "jaspershen/MetNormalizer"), badge_dependencies(), badge_lifecycle() # badge_cran_download("badger", "grand-total", "green"), # badge_cran_download("badger", "last-month", "green"), # badge_cran_download("badger", "last-week", "green") )
You can install MetNormalizer
from Github.
# Install `MetNormalizer` from GitHub if(!require(devtools)){ install.packages("devtools") } devtools::install_github("jaspershen/MetNormalizer")
We use the demo data in demoData
package to show how to use MetNormalizer
. Please install it first.
devtools::install_github("jaspershen/demoData")
library(demoData) library(MetNormalizer) path <- system.file("MetNormalizer", package = "demoData") file.copy(from = path, to = ".", overwrite = TRUE, recursive = TRUE) new.path <- file.path("./MetNormalizer")
MetNormalizer
metNor( ms1.data.name = "data.csv", sample.info.name = "sample.info.csv", minfrac.qc = 0, minfrac.sample = 0, optimization = TRUE, multiple = 5, threads = 4, path = new.path )
All the results will be placed in the folder named as svr_normalization_result
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.