# setwd("E:/project/MSMS optimization/QC10_HILIC")
# # dataProcessing(path = ".", polarity = "positive",
# # ppm = 25, peakwidth = c(5, 30), noise = 1000)
#
# load("Result/raw_data")
# peak_table <- readr::read_csv("Result/Peak.table.csv")
#
# library(tidyverse)
#
# peak_table <- peak_table %>%
# filter(., !is.na(QC10_pHILIC.1)) %>%
# filter(., rank(desc(QC10_pHILIC.1)) <= 50)
# write.csv(peak_table, "Peak_table.csv")
# colnames(peak_table)
#
# mz <- peak_table$mzmed
# rt <- peak_table$rtmed
#
#
# # temp.data <- data.frame(mz, rt, intensity = log(QC10_pHILIC.1, 10),
# # stringsAsFactors = FALSE)
# #
# # plot <- ggplot(temp.data, aes(x = rt, y = mz, colour = intensity)) +
# # geom_point()
# #
# # library(rayshader)
# # plot_gg(plot,multicore=TRUE,width=5,height=5,scale=250)
#
#
# mz_range <- lapply(mz, function(x){
# c(x - 12.5 * ifelse(x < 400, 400, x) / 10^6,
# x + 12.5 * ifelse(x < 400, 400, x) / 10^6)
# })
#
# rt_range <- lapply(rt, function(x){
# c(x - 100, x + 100)
# })
#
# for(i in 1:50){
# cat(i, " ")
# temp <- chromatogram(raw_data, mz = mz_range[[i]],
# rt = rt_range[[i]])
# png(filename = paste(i,"png", sep = "."), width = 8, height = 6,
# units = "in", res = 300)
# plot(temp)
# dev.off()
# }
#
#
#
# setwd("E:/project/MSMS optimization/QC10_RPLC")
# dataProcessing(path = ".", polarity = "positive",
# ppm = 25, peakwidth = c(5, 30),
# noise = 1000)
#
# load("Result/raw_data")
# peak_table <- readr::read_csv("Result/Peak.table.csv")
#
# library(tidyverse)
#
# peak_table <- peak_table %>%
# filter(., !is.na(QC10_pRPLC.1)) %>%
# filter(., rank(desc(QC10_pRPLC.1)) <= 50)
# write.csv(peak_table, "Peak_table.csv")
# colnames(peak_table)
#
# mz <- peak_table$mzmed
# rt <- peak_table$rtmed
#
# mz_range <- lapply(mz, function(x){
# c(x - 12.5 * ifelse(x < 400, 400, x) / 10^6,
# x + 12.5 * ifelse(x < 400, 400, x) / 10^6)
# })
#
# rt_range <- lapply(rt, function(x){
# c(x - 100, x + 100)
# })
#
# for(i in 1:50){
# cat(i, " ")
# temp <- chromatogram(raw_data, mz = mz_range[[i]],
# rt = rt_range[[i]])
# png(filename = paste(i,"png", sep = "."), width = 8, height = 6,
# units = "in", res = 300)
# plot(temp)
# dev.off()
# }
#
#
# load("E:/project/MSMS optimization/QC10_HILIC/Result/raw_data")
#
#
#
#
#
# match.result <- as.data.frame(match.result)
#
# library(tidyverse)
#
# library(plyr)
# temp.data <- plyr::dlply(.data = match.result, .variables = .(Index1))
#
# count <- unlist(lapply(temp.data, nrow))
# count <- unname(count)
# count <- data.frame(count)
# library(ggplot2)
# ggplot(data = count) +
# geom_bar(mapping = aes(x = count, fill = factor(count))) +
# annotate(geom = "text", x = c(1,2,3), y = c(table(count$count))/2, label = c(table(count$count)),
# color = "white", size = 10) + theme_bw()+
# ggthemes::theme_economist()
# plot(unlist(lapply(temp.data, nrow)))
#
#
#
#
# getwd()
#
# setwd("E:/project/MSMS optimization")
# peak.table.rplc <- readr::read_csv("QC10_RPLC/Peak_table.csv")
# rt1 <- peak.table.rplc$`Peak width`
#
# peak.table.hilic <- readr::read_csv("QC10_HILIC/Peak_table.csv")
# rt2 <- peak.table.hilic$`Peak width`
#
#
# rt <- rbind(data.frame(RT = rt1, LC = "RPLC", stringsAsFactors = FALSE),
# data.frame(RT = rt2, LC = "HILIC", stringsAsFactors = FALSE))
#
#
# library(ggplot2)
#
# rt <- filter(.data = rt, !is.na(RT))
# plot <- ggplot(data = rt, mapping = aes(x = LC, y = RT)) +
# geom_boxplot(fill = mypal[7]) +
# theme_bw() +
# labs(x = "LC", y = "Peak width (second)")+
# annotate(geom = "text", x = c(1,2), y = c(43,22),
# label = c("34.6 second", "18.4 second"), col = "white", size = 5)
#
# library(ggsci)
# mypal = pal_npg("nrc", alpha = 0.7)(9)
# mypal
# library("scales")
# show_col(mypal)
#
# plot <- plot +
# scale_fill_manual(values = mypal[3:4])
#
# mean(rt1, na.rm = TRUE)
# mean(rt2, na.rm = TRUE)
# export::graph2ppt(x = plot, file = "plot")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.