#' @title Current values of all model parameters
#'
#' @description For a given set of values for the parameters to be estimated,
#' this method returns an array containing the actual (not log-transformed)
#' values of all model parameters, not just those to be estimated,
#' in the same order as specified in the model. This is helpful
#' when simulating the model at a given position in parameter space.
#'
#' @param options list with entries as explained below.
#' Options set -- defines the problem and sets some
#' parameters to control the MCMC algorithm.
#' model: List of model parameters - to estimate.
#' The parameter objects must each have a
#' 'value' attribute containing the parameter's numerical value.
#' estimate_params: list.
#' List of parameters to estimate, all of which must also be listed
#' in 'options$model$parameters'.
#' initial_values: list of float, optional.
#' Starting values for parameters to estimate. If omitted, will use
#' the nominal values from 'options$model$parameters'
#' step_fn: callable f(output), optional.
#' User callback, called on every MCMC iteration.
#' likelihood_fn: callable f(output, position).
#' User likelihood function.
#' prior_fn: callable f(output, position), optional.
#' User prior function. If omitted, a flat prior will be used.
#' nsteps: int.
#' Number of MCMC iterations to perform.
#' use_hessian: logical, optional.
#' Wheter to use the Hessian to guide the walk. Defaults to FALSE.
#' rtol: float or list of float, optional.
#' Relative tolerance for ode solver.
#' atol: float or list of float, optional.
#' Absolute tolerance for ode solver.
#' norm_step_size: float, optional.
#' MCMC step size. Defaults to a reasonable value.
#' hessian_period: int, optional.
#' Number of MCMC steps between Hessian recalculations. Defaults
#' to a reasonable but fairly large value, as Hessian calculation is expensive.
#' hessian_scale: float, optional.
#' Scaling factor used in generating Hessian-guided steps. Defaults to a
#' reasonable value.
#' sigma_adj_interval: int, optional.
#' How often to adjust 'output$sig_value' while annealing to meet
#' 'accept_rate_target'. Defaults to a reasonable value.
#' anneal_length: int, optional.
#' Length of initial "burn-in" annealing period. Defaults to 10% of
#' 'nsteps', or if 'use_hessian' is TRUE, to 'hessian_period' (i.e.
#' anneal until first hessian is calculated)
#' T_init: float, optional.
#' Initial temperature for annealing. Defaults to a resonable value.
#' accept_rate_target: float, optional.
#' Desired acceptance rate during annealing. Defaults to a reasonable value.
#' See also 'sigma_adj_interval' above.
#' sigma_max: float, optional.
#' Maximum value for 'output$sig_value'. Defaults to a resonable value.
#' sigma_min: float, optional.
#' Minimum value for 'output$sig_value'. Defaults to a resonable value.
#' sigma_step: float, optional.
#' Increment for 'output$sig_value' adjustments. Defaults to a resonable
#' value. To eliminate adaptive step size, set sigma_step to 1.
#' thermo_temp: float in the range [0,1], optional.
#' Temperature for thermodynamic integration support. Used to scale
#' likelihood when calculating the posterior value. Defaults to 1,
#' i.e. no effect.
#'
#'
#' @param output List of output values with entries as explained below.
#' num_estimate: int.
#' Number of parameters to estimate.
#' estimate_idx: list of int.
#' Indices of parameters to estimate in the model's full parameter list.
#' initial_values: list of float.
#' Starting values for parameters to estimate, taken from the parameters'
#' nominal values in the model or explicitly specified in 'options'.
#' initial_position: list of float.
#' Starting position of the MCMC walk in parameter space (log10 of 'initial_values').
#' position: list of float.
#' Current position of MCMC walk in parameter space, i.e. the most
#' recently accepted move.
#' test_position: list of float.
#' Proposed MCMC mmove.
#' acceptance: int.
#' Number of accepted moves.
#' T: float.
#' Current value of the simulated annealing temperature.
#' T_decay: float.
#' Constant for exponential decay of 'T', automatically calculated such
#' that T will decay from 'options$T_init' down to 1 over the first
#' 'options$anneal_length' setps.
#' sig_value: float.
#' Current value of sigma, the scaling factor for the proposal distribution.
#' The MCMC algorithm dynamically tunes this to maintain the aaceptance
#' rate specified in 'options$accept_rate_target'.
#' iter: int.
#' Current MCMC step number.
#' start_iter: int.
#' Starting MCMC step number.
#' ode_options: list.
#' Options for the ODE integrator, currently just 'rtol' for relative
#' tolerance and 'atol' for absolute tolerance.
#' initial_prior: float.
#' Starting prior value, i.e. the value at 'initial_position'.
#' initial_likelihood: float.
#' Starting likelihood value, i.e. the value at 'initial_position'.
#' initial_posterior: float.
#' Starting posterior value, i.e. the value at 'initial_position'.
#' accept_prior: float.
#' Current prior value i.e. the value at 'position'.
#' accept_likelihood: float.
#' Current likelihood value i.e. the value at 'position'.
#' accept_posterior: float.
#' Current posterior value i.e. the value at 'position'.
#' test_prior: float.
#' Prior value at 'test_position'.
#' test_likelihood: float.
#' Likelihood value at 'test_position'.
#' test_posterior: float.
#' Posterior value at 'test_position'.
#' hessian: array of float.
#' Current hessian of the posterior landscape. Size is
#' 'num_estimate' x 'num_estimate'.
#' positions: array of float.
#' Trace of all proposed moves. Size is 'num_estimate' x 'nsteps'.
#' priors: array of float.
#' Trace of all priors corresponding to 'positions'. Length is 'nsteps'.
#' likelihoods: array of float.
#' Trace of all likelihoods corresponding to 'positions'. Length is 'nsteps'.
#' posteriors: array of float.
#' Trace of all posteriors corresponding to 'positions'. Length is 'nsteps'.
#' alphas: array of float. Trace of 'alpha' parameter and calculated values. Length is 'nsteps'.
#' sigmas: array of float. Trace of 'sigma' parameter and calculated values. Length is 'nsteps'.
#' delta_posteriors: array of float. Trace of 'delta_posterior' parameter and calculated values. Length is 'nsteps'.
#' ts: array of float. Trace of 'T' parameter and calculated values. Length is 'nsteps'.
#' accepts: logical array.
#' Trace of wheter each proposed move was accepted or not.
#' Length is 'nsteps'.
#' rejects: logical array. Trace of wheter each proposed move was rejected or not. Length is 'nsteps'.
#' hessians: array of float.
#' Trace of all hessians. Size is 'num_estimate' x 'num_estimate' x 'num_hessians'
#' where 'num_hessians' is the actual number of hessians to be calculated.
#'
#'
#'
#'
#' @param position list of float, optional.
#' log10 of the values of the parameters being estimated.
#' If omitted, 'output$position' (the most recent accepted output move)
#' will be used. The model's nominal values will be used for all parameters
#' *not* being estimated, regardless.
#'
#' @return A list of the values of all model parameters.
cur_params = function(output,options,position=NULL){
if(is.null(position)){
position = output$position
}
values = as.numeric(options$model$parameters$value)
values[output$estimate_idx] = 10^position
return(values)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.