knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
hermes
is a successor of the Roche internal rnaseqTools
R package, and therefore many code ideas have been borrowed from it. Therefore we would like to thank the rnaseqTools
authors for their work.
In particular, we would like to acknowledge Chendi Liao and Joe Paulson for their guidance and explanations during the development of hermes
. We also discussed the class design with Valerie Obenchain, and discussed RNAseq
data standards with Armen Karapetyan. We borrowed some ideas from the Roche internal biokitr
R package and discussed them with its maintainer Daniel Marbach.
Finally, hermes
originated as part of the NEST project.
We are grateful for the entire team's support.
Thanks a lot to everyone involved!
First let's see how we can install the hermes
package.
BioConductor
With the development version (3.15) of BioConductor
,
you can install the current package version with:
if (!require("BiocManager")) { install.packages("BiocManager") } BiocManager::install("hermes")
You can install the unstable development version from GitHub with:
if (!require("devtools")) { install.packages("devtools") } devtools::install_github("insightsengineering/hermes")
The hermes
R package provides classes, methods and functions to import, quality-check, filter, normalize, analyze RNAseq
counts data. The core functionality is built on the BioConductor
ecosystem, especially SummarizedExperiment
. This is the vignette to read for new users of this package.
In this vignette you are going to learn how to:
RNAseq
count data into the hermes
ready format.BioMart
).The packages used in this vignette are:
library(hermes) library(SummarizedExperiment)
The datasets used in this vignette are:
?expression_set ?summarized_experiment
The data for hermes
needs to be imported into the HermesData
or RangedHermesData
format.
SummarizedExperiment
The simplest way to import data is from a SummarizedExperiment
(SE) object. This is because a HermesData
object
is just a special SE, with few additional requirements and slots.
In a nutshell, the object needs to have a counts
assay, have certain
gene and sample variables, and have unique row and column names. The row names, i.e. the gene names, must
start with a common prefix GeneID
or ENSG
to enable easy annotations.
See ?HermesData
for the detailed requirements.
When the SE follows the minimum conventions, we can just call the HermesData
constructor on it:
object <- HermesData(summarized_experiment)
And we have a HermesData
object.
object
Note that in this case deprecated names were used for the rowData
and colData
variables,
therefore they appear under "additional" gene and sample information. However we can
still call the default constructor because the new names will be filled with missing values, e.g.:
head(annotation(object))
If we want to map old column names to new column names to avoid duplication with new missing value columns,
we can do this using the rename()
method. For example here:
object <- summarized_experiment %>% rename( row_data = c( symbol = "HGNC", desc = "HGNCGeneName", chromosome = "Chromosome", size = "WidthBP", low_expression_flag = "LowExpressionFlag" ), col_data = c( low_depth_flag = "LowDepthFlag", technical_failure_flag = "TechnicalFailureFlag" ) ) %>% HermesData()
For example we can now see in the annotations that we successfully carried over the information since we mapped the old annotations to the new required names above:
head(annotation(object))
For a bit more details we can also call summary()
on the object.
summary(object)
For the below, let's use the already prepared HermesData
object.
object <- hermes_data
Likewise, when we receive the error "no 'counts' assay found", we can use the rename()
function to change the name of the assay in the SummarizedExperiment
object to counts
. For example, the following object of type SummarizedExperiment
would have the assay name count
, and would produce the assay name error:
object_exp <- summarized_experiment %>% rename(assays = c(count = "counts"))
And we would use the following code to convert the assay name to counts
, making it able to convert into HermesData
object:
object_exp <- rename(object_exp, assays = c(counts = "count") ) object_exp <- HermesData(object_exp)
ExpressionSet
If we start from an ExpressionSet
, we can first convert it to a RangedSummarizedExperiment
and then import it to RangedHermesData
:
se <- makeSummarizedExperimentFromExpressionSet(expression_set) object2 <- HermesData(se) object2
In general we can also import a matrix of counts. We just have to pass the required gene and sample information as data frames to the constructor.
counts_matrix <- assay(hermes_data) object3 <- HermesDataFromMatrix( counts = counts_matrix, rowData = rowData(hermes_data), colData = colData(hermes_data) ) object3 identical(object, object3)
Note that we can easily access the counts assay (matrix) in the final object with counts()
:
cnts <- counts(object) cnts[1:3, 1:3]
hermes
provides a modular approach for querying gene annotations, in order to
allow for future extensions in this or other downstream packages.
The first step is to connect to a database. In hermes
the only option is currently databases that utilize the
BioMart
software suite.
However due to the generic function design, it is simple to extend hermes
with other data base
connections.
In order to save time during vignette build, we zoom in here on a subset of the original object
containing only the first 10 genes.
small_object <- object[1:10, ]
The corresponding function takes the common gene ID prefix as argument to determine the format of the gene IDs and the filter variable to use in the query later on.
httr::set_config(httr::config(ssl_verifypeer = 0L)) connection <- connect_biomart(prefix(small_object))
Here we are using the prefix()
method to access the prefix saved in the HermesData
object.
Then the second step is to query the gene annotations and save them in the object.
annotation(small_object) <- query(genes(small_object), connection)
Here we are using the genes()
method to access the gene IDs (row names) of the HermesData
object.
Note that not all genes might be found in the data base and the corresponding rows would then be NA
in the annotations.
hermes
provides automatic gene and sample flagging, as well as manual sample flagging functionality.
For genes, it is counted how many samples don't pass a minimum expression CPM
(counts per million reads mapped) threshold.
If too many, then this gene is flagged as a "low expression" gene.
For samples, two flags are provided. The "technical failure" flag is based on the average Pearson correlation with other samples. The "low depth" flag is based on the library size, i.e. the total sum of counts for a sample across all genes.
Thresholds for the above flags can be initialized with control_quality()
, and the flags are added with add_quality_flags()
.
my_controls <- control_quality(min_cpm = 10, min_cpm_prop = 0.4, min_corr = 0.4, min_depth = 1e4) object_flagged <- add_quality_flags(object, control = my_controls)
Sometimes it is necessary to manually flag certain samples as technical failures, e.g. after looking at one of the analyses discussed below. This is possible, too.
object_flagged <- set_tech_failure(object_flagged, sample_ids = "06520011B0023R")
All flags have access functions.
head(get_tech_failure(object_flagged)) head(get_low_depth(object_flagged)) head(get_low_expression(object_flagged))
We can either filter based on the default QC flags, or based on custom variables from the gene or sample information.
This is simple with the filter()
function. It is also possible to selectively only filter the genes or the samples using the what
argument.
object_flagged_filtered <- filter(object_flagged) object_flagged_genes_filtered <- filter(object_flagged, what = "genes")
This can be done with the subset()
function. Genes can be filtered with the subset
argument via expressions using the gene information variables, and samples can be filtered with the select
argument using the sample information variables. In order to see which ones are available these can be queries first.
names(rowData(object_flagged)) names(colData(object_flagged)) head(rowData(object_flagged)$chromosome) head(object_flagged$ARMCD) object_flagged_subsetted <- subset( object_flagged, subset = chromosome == "5", select = ARMCD == "COH1" )
Normalizing counts within samples (CPM
), genes (RPKM) or across both (TPM) can be
achieved with the normalize()
function. The normalize()
function can also transform the counts by the variance stabilizing transformation (vst
) and the regularized log transformation (rlog
) as proposed in the DESeq2
package.
object_normalized <- normalize(object_flagged_filtered)
object_rlog_normalized <- normalize(object_flagged_filtered, "rlog")
The corresponding assays are saved in the object and can be accessed with assay()
.
assay(object_normalized, "tpm")[1:3, 1:3]
assay(object_rlog_normalized, "rlog")[1:3, 1:3]
The used control settings can be accessed afterwards from the metadata of the object:
metadata(object_normalized)
Note that also the filtering settings are saved in here. For custom normalization options,
use control_normalize()
. For example, to not use log scale but the original scale of the counts:
object_normalized_original <- normalize( object_flagged_filtered, control = control_normalize(log = FALSE) ) assay(object_normalized_original, "tpm")[1:3, 1:3]
A series of simple descriptive plots can be obtained by just calling autoplot()
on an object.
autoplot(object)
Note that individual plots from these can be produced with the series of draw_*()
functions, see ?plot_all
for the
detailed list. Then, these can be customized further.
For example, we can change the number and color of the bins in the library size histogram:
draw_libsize_hist(object, bins = 10L, fill = "blue")
Top genes can be calculated and visualized in a barplot.
most_expr_genes <- top_genes(object_normalized, assay_name = "tpm") autoplot(most_expr_genes)
By passing another summary function, also the variability can be ranked for example.
most_var_genes <- top_genes(object_normalized, summary_fun = rowSds) autoplot(most_var_genes)
Relative expression of genes can be displayed using a heatmap
draw_heatmap(object[1:20], assay_name = "counts")
The heatmap can be grouped by labels in the HermesData
object,
such as "COUNTRY"
or "AGEGRP"
.
draw_heatmap(object[1:20], assay_name = "counts", col_data_annotation = "COUNTRY")
A sample correlation matrix between samples can be obtained with the
correlate()
function. This can be visualized in a heatmap using autoplot()
again. See ?calc_cor
for detailed options.
cor_mat <- correlate(object) autoplot(cor_mat)
Let's see how we can perform Principal Components Analysis (PCA).
PCA can be performed with calc_pca()
. The result can be summarized or plotted.
pca_res <- calc_pca(object_normalized, assay_name = "tpm") summary(pca_res)$importance autoplot(pca_res)
Note that various options are available for the plot, for example we can look at different principal components, and color the samples by sample variables. See ?ggfortify::autoplot.prcomp
for details.
autoplot( pca_res, x = 2, y = 3, data = as.data.frame(colData(object_normalized)), colour = "SEX" )
Subsequently it is easy to correlate the obtained principal components with the sample variables. We obtain a matrix of
R-squared (R2) values for all combinations, which can again be visualized as a heatmap.
See ?pca_cor_samplevar
for details.
pca_cor <- correlate(pca_res, object_normalized) autoplot(pca_cor)
In order to quickly obtain a quality control report for a new RNAseq
data set, you can proceed as follows.
SummarizedExperiment
using R's save()
function in a binary data file (e.g. ending with .rda
suffix).hermes
package in RStudio
and click on: File
> New File
> R Markdown
> From Template
and select the QC report template from hermes
.
{width=4in}yaml
header, including the required file paths for the input file from above, and where the resulting HermesData
object should be saved.The report contains the above mentioned descriptive plots and PCA analyses and can be a useful starting point for your analysis.
In addition to the above QC analyses, simple differential expression analysis is supported by hermes
.
In addition to the filtered object (normalization of counts is not required) the variable name of the factor to contrast the samples needs to be provided to diff_expression()
.
colData(object) <- df_cols_to_factor(colData(object)) diff_res <- diff_expression(object, group = "SEX", method = "voom") head(diff_res)
Note that we use here the utility function df_cols_to_factor()
which converts by default all character and logical variables to factor variables. This is one possible way here to ensure that the utilized group variable is a factor.
Afterwards a standard volcano plot can be produced.
autoplot(diff_res, log2_fc_thresh = 8)
The hermes
R package provides classes, methods and functions to import, quality-check, filter, normalize and analyze RNAseq
counts data. In particular, the robust object-oriented framework allows for easy extensions in the future to address user feature requests. These and other feedback are very welcome - thank you very much in advance for your thoughts on hermes
!
Here is the output of sessionInfo()
on the system on which this document was
compiled running pandoc
r rmarkdown::pandoc_version()
:
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.